Провода для мегаомметра своими руками

Провода для мегаомметра своими руками

Доброе время суток Уважаемые.
Немного предисловия.
Понадобился мне для работы мегаомметр.Таскать по выездам отечественный стрелочный монстр с ручкой надоело,покупать хороший заводской цифровой — жаба давит,испробовав дешевую китайскую приставку к мультиметру(Приставка к токовым клещам DT266)- разочаровался во многом. но прежде всего хлипкость конструкции,раздельное питание с использованием не однотипных питающих элементов,и главное отсутствие стабильности показаний (при измерение одной и той же кабельной пары показания ,незначительно,но отличаются.
Изучив рунет,только совсем недавно обнаружил конструкцию «Бобер-2» на этом сайте. хотя речь не о нем сейчас. и все. Больше не одной похожей конструкции и близко.
И вот только недавно мне удалось разыскать в заграничном журнале SILICON CHIP
две конструкции одного прибора. но к сожалению там хотели денег. нашлись «добрые спонсоры» и помогли разыскать все для сборки этих приборов.

Если не ошибаюсь автор этих приборов Jim Rowe

Прибор 1(вариант первый)
Напряжение измерения 500 и 1000 вольт,предел измерения 999МОм










Прошивка и печатка в пдф в конце поста.

Прибор 2 (вариант второй) как оказалось по нему было сложнее всего найти информацию.
Напряжение измерения 250,500,1000 вольт,предел измерения 999МОм














Прошивка и печатка в пдф ниже

Надеюсь кому нибудь эта информация пригодится.

Добавил более качественными изображениями,лучше нет.

Источник

МЕГАОММЕТР на Атмега328Р

Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.

Поискав в интернете, простого устройства не нашел, единственный мегаомметр, который повторили радиолюбители был из журнала «Silicon Chip» октябрь 2009 года, но с доработанной прошивкой. Предлагаемый вашему вниманию прибор имеет габариты 100х60х25 ( корпуса были приобретены на AliExpress) и имеет вес не более 100 грамм. Устройство собрано на микроконтроллере Atmega328P. Питание осуществляется от литеевого аккумулятора и ток потребления составляет около 5 мА. Чем меньше сопротивление измеряемой цепи, тем больше ток потребления и достигает 700-800 мА, но нужно учесть, что цепи с сопротивление меньше 10 кОм встречаются редко и измерение осуществляется за несколько секунд. В устройстве применены два DC-DC преобразователя на MT3608 и MC34063. Первый используется для питания контроллера, напряжение аккумулятора повышается и стабилизируется на уровне 5 вольт, второй преобразователь на 100В, это определено тем, что в основном используется для замеров утечки в электронных устройствах, ну и сделать 500 или 1000В экономичный преобразователь очень пробематично. Сначала была идея оба преобразователя собрать на МТ3608, но после того, как я спалил 8 микросхем, было решено сделать на МС34063. Да и при 500, 1000В пришлось применять более высокоомный делитель и как следствие применение операционных усилителей Rail-To-Rail.

Индикация осуществляется на жидкокристаллический дисплей. Для заряда аккумулятора применен контроллер заряда на TP4056 (отдельная платка 17х20 мм).

Устройство собрано на двухсторонней печатной плате из фольгированного стеклотекстолита, изготовленной по технологии ЛУТ. Не стоит пугаться слова «двухсторонняя».Распечатываются две картинки ПП низ и верх(зеркально). Совмещаются на просвет и скрепляются степлером в виде конверта. Вкладывается заготовка и сначала прогревается с двух сторон утюгом, затем с двух сторон тщательно проглаживается через два стоя писчей бумаги. Отпечатанную заготовку бросаем в емкость с теплой водой примерно на пол часа, затем пальцем под струёй теплой воды убираем остатки бумаги. После травления лудим в сплаве Розе. Сквозные отверстия для проводников выполнены медным луженым проводом диаметром 0.7 мм. Входы прибора выполнены из латунных трубок от старого мультиметра, поэтому можно применять штатные щупы от мультиметров, но желательно сделать самодельные с зажимами типа «крокодил».

Применены SMD детали, резисторы 5%, конденсаторы 10%. Нужно учесть, что это не омметр и не служит для точного измерения сопротивления, хотя точность в диапазоне 1К — 1М достаточно велика. Для повышения достоверности показаний весь диапазон измерения сопротивлений разбит на три. В прошивке применен oversampling. Использованы три делителя напряжения 1;10, 1:100 и 1:1000. Последний диапазон очень растянут, от 10 мОм до 100 мОм и при дискретности АЦП микроконтроллера 10 бит имеет очень крупный шаг, около 90 кОм. К тому же пришлось применить цепи защиты входом микроконтроллера и они вносят погрешность на двух верхних диапазонах. Ниже вы видите рисунки с результатами замеров.

Может кто-то захочет усовершенствовать прибор или более точно откалибровать, поэтому я прикладываю исходники. При калибровке подключаем точный резистор не хуже 1%, например 47 кОм и подбираем коэффициент для диапазона 10-100 кОм в строке:

Шкала от 10 до 100 мОм очень не линейна, вначале показания занижаются kx2, а в конце диапазона завышаются kx1, поэтому подбираются два коэффициента аналогично, но резистор ставим 20 мОм, затем 47 мОм и затем 91 мОм:

С наилучшими пожеланиями, Самоделкин и Ю.Градов.

Источник

Сделать мегаомметр своими руками

Сделать мегаомметр своими руками

Если зарядить электролитический конденсатор, скажем до 1000 вольт, а последовательно с ним включить стрелочную головку с током полного отклонения 50 микроампер и резисторы для установки тока отклонения, то можно ли будет такой ерундовиной пользоваться как мегаомметром? Пусть показания будут неточными, пусть это будет только грубый пробник.
То есть, получится простейший омметр на один предел измерений.
В принципе, должно ведь это как-то работать. Если где-то в изоляции есть пробой, то при приложении 1000 вольт должен пойти в этом месте ток.

Задумка не плохая,но нужно учитывать,что измеряемая деталь(изделие)в сухом состоянии может быть и «ГУТ».а при соприкосновении с водой — утечка.Даже ТЕНы на «холодную» не «текут»,а после 10-20 мин-ХОПА.

Ты прямо-таки попал пальцем в небо

Конденсатор электролитический зачем? Наверное что бы при случайном касании щупов искры из глаз сыпались. Для измерения хватит и долей микрофарада. И маломощный преобразователь в придачу.

Lenchik, Ничего из глаз не посыплется. Потому что токоограничительные резисторы будут стоять, которые ток до 50 мкА уменьшат при КЗ щупов. Причем оба щупа будут включены через резисторы. А электролит — ну, чтоб дольше держал. 10 — ти мкФ вполне хватит. Устройство должно подключаться к розетке, а 1000 В образовываться при помощи умножителя напряжения. На время измерений выключать из розетки. Резисторы на оба щупа — для развязки с сетью на тот случай, если прибор будет включен в розетку.

ДОБАВЛЕНО 16/09/2013 00:25

У меня, вообще-то уже есть действющая модель. Но там только удвоитель напряжения, поэтому не 1000 В. получается, а всего около 620.
Только я я чет понять не могу, работает она как надо, или нет. Или вообще это затея пустая.

Lenchik, Ничего из глаз не посыплется. Потому что токоограничительные резисторы будут стоять, которые ток до 50 мкА уменьшат при КЗ щупов. Причем оба щупа будут включены через резисторы. А электролит — ну, чтоб дольше держал. 10 — ти мкФ вполне хватит. Устройство должно подключаться к розетке, а 1000 В образовываться при помощи умножителя напряжения. На время измерений выключать из розетки.

ДОБАВЛЕНО 16/09/2013 00:25

У меня, вообще-то уже есть действющая модель. Но там только удвоитель напряжения, поэтому не 1000 В. получается, а всего около 620.
Только я я чет понять не могу, работает она как надо, или нет. Или вообще это затея пустая.

Или ты шутишь,или это — утроитель напряжения.

Или ты снова прикол сморозил
С тобой не соскучишься.

Попробую завтра набросать схему по «твоей идее».А «по твоей» схеме — толку никакого.

только у него шкала нелинейная и обратная.шкалу придется самому рисовать.

Электролит там явно не нужен, да и де ты такой возьмёшь — на 1000в?! Хотя если поискать то конечно, но для пробника хватит и обычной плёнки.

При испытании изоляции мегоомметром учитывается не только подаваемое напряжение, но и время испытания. С помощью такой «пукалки» можно увидеть конкретный коротыш, какой можно увидеть и обычным мультиметром. Если пробой не полный, Вы его не увидете, а вот мегоомметром увидете по дёрганию стрелки а иногда по искре в повреждённом месте.
Испытательное напряжение должно в несколько раз привышать рабочее.

Читайте также:  Ловушка для богомола своими руками

Morlock, а несколько электролитов на 400В последовательно включить разве трудно?
А в умножителе напряжения они как раз так и оказываются включены. Выдергиваем вилку из розетки и, пока кондеры не разрядились, можно пользоваться.
Как видно, наращивать напряжение — не проблема. А подключаясь к разным каскадам умножителя, можно и менять его (но тогда параллельно еще и придется менять значения R2 и R3, что приведет к усложнению схемы, поэтому я просто остановился бы на 1000В, то есть на трех каскадах умножителя).

Настоящий мегаомметр, как я понимаю, должен поддерживать на щупах прибора (т.е. на тестируемом участке) постоянное напряжение и замерять ток через участок. А у меня этого не будет, значит напряжение на щупах будет сильно меняться в зависимости от сопротивления измеряемого участка. Следовательно, не будет чувствительности.
Для примера добавлю, что у «модели», о которой я упоминал выше, тестер на щупах показывает напряжение не 620В, до которых заряжены конденсаторы, а только 250. То есть тестер своим внутренним сопротивлением просаживает напряжение на токоограничительных резисторах R2 и R3.

ДОБАВЛЕНО 20/09/2013 13:50

В реале я сейчас имею вот это

ДОБАВЛЕНО 20/09/2013 13:56

Рисовал, положив бумагу на колено. Вообще-то я и покрасивей могу.

Бессовестный Арбуз, а что конкретно собираешся проверять?

Простой мегомметр

Для проверки сопротивления изоляции электродвигателя, кабеля или трансформатора применяют мегомметры на соответствующее напряжение. Иногда нужно ориентировочно оценить состояние изоляции глубинного насоса, сварочного трансформатора, электропроводки и т.д. Обычным мультиметром этого сделать нельзя, так как на его щупах очень низкое напряжение, которое не может быть использовано для проверки прочности изоляции.

Для этого нужен автономный источник постоянного высокого напряжения 1000В, а на производстве иногда 2500В. Схема такого источника приведена ниже. Устройство представляет собой генератор прямоугольных импульсов с регулируемой частотой и скважностью импульсов выполненный на микросхеме NE555. Регулировка позволяет подстроить работу повышающего трансформатора для получения на выходе устройства нужного напряжения. Повышающий трансформатор подбирается экспериментально, выполненный на замкнутом ферритовом магнитопроводе, соотношение витков примерно 1:50 — 1:100, диаметр провода не менее 0,08мм на вторичке и не менее 0,2мм на первичной обмотке. При изготовлении повышающего трансформатора нужно позаботиться о хорошей изоляции обмоток и выводов вторичной обмотки. При расположении на печатной плате деталей со стороны высокого напряжения, должны быть соблюдены достаточные расстояния между дорожками и местами пайки. В противном случае это может привести к пробою по поверхности платы. Сигналом наличия высокого напряжения служит неоновая лампочка. В качестве стрелочного прибора может быть любой микроамперметр зашунтированный шунтом и отградуированный по эталонным сопротивлениям. Я использовал индикатор уровня записи от советского магнитофона «Электроника». Питание осуществляется от двух последовательно соединённых батареек на 9В типа «Крона». Всё собирается в пластиковом корпусе и помещается в кармане.

Если генератор импульсов собран правильно, то настройка и градуировка устройства следующая:

1. Подключаем стрелочный мультиметр к выводам высокого напряжения (цифровой для этих целей не подходит из-за неустойчивости показаний к ВЧ импульсам)

2. В разрыв питания 18В подключаем миллиамперметр (желательно стрелочный)

3. Полностью шунтируем микроамперметр

4. Включаем наш мегомметр

5. Перемещая контакты подстроечных резисторов добиваемся максимального напряжение на выходе со стороны высокого напряжения и минимального тока питания. Например, 2500В на высоком напряжении и ток 30мА на низком напряжении питания 18В (для сведения: измерения электрооборудования напряжением 220В, 380В мегомметр промышленного изготовления должен вырабатывать на выходе напряжение 1000В током около 500мкА)

6. Выключаем мегомметр, отсоединяем все мультиметры, замыкаем вывода высокого напряжения

7. Включаем мегомметр

8. Регулируем шунтовое сопротивление и отмечаем на шкале микроамперметра «Ноль»

9. Выключаем мегомметр и подсоединяем эталонное сопротивление 500кОм

10. Включаем мегомметр и отмечаем на шкале микроамперметра деление 500кОм

11. То же самое проделываем с эталонным сопротивлением 1МОм, 10МОм, 100Мом начиная с пункта 9.

На этом настройка заканчивается. Последующие градуировки могут понадобиться, если напряжение питания батарей со временем понизятся.

О деталях: транзистор IRF540 может быть заменён на менее мощный, диоды D1-D2 — любые быстродействующие (примерно на 100кГц), С3 — от 200мкФ и выше, D3 – аналогичный высокочастотный высоковольтный диод, La1 – любая неоновая лампочка, Т – произвольный повышающий малогабаритный ферритовый трансформатор.

Внимание! Работа с устройством связана с высоким напряжением опасным для жизни. Поэтому соблюдения и знание правил работы с мегомметрами обязательно. После проверки состояния изоляции электрооборудования все токоведущи части должны быть разряжены путём их замыкания между собой и заземлённым проводником в течение времени 5-10 секунд. Не следует испытывать этим устройством высоковольтные конденсаторы, так как накопленная энергия в результате может быть смертельной.

Вид прибора снаружи:

Пример изготовления повышающего трансформатора:

МЕГАОММЕТР на Атмега328Р

Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.

Поискав в интернете, простого устройства не нашел, единственный мегаомметр, который повторили радиолюбители был из журнала «Silicon Chip» октябрь 2009 года, но с доработанной прошивкой. Предлагаемый вашему вниманию прибор имеет габариты 100х60х25 ( корпуса были приобретены на AliExpress) и имеет вес не более 100 грамм. Устройство собрано на микроконтроллере Atmega328P. Питание осуществляется от литеевого аккумулятора и ток потребления составляет около 5 мА. Чем меньше сопротивление измеряемой цепи, тем больше ток потребления и достигает 700-800 мА, но нужно учесть, что цепи с сопротивление меньше 10 кОм встречаются редко и измерение осуществляется за несколько секунд. В устройстве применены два DC-DC преобразователя на MT3608 и MC34063. Первый используется для питания контроллера, напряжение аккумулятора повышается и стабилизируется на уровне 5 вольт, второй преобразователь на 100В, это определено тем, что в основном используется для замеров утечки в электронных устройствах, ну и сделать 500 или 1000В экономичный преобразователь очень пробематично. Сначала была идея оба преобразователя собрать на МТ3608, но после того, как я спалил 8 микросхем, было решено сделать на МС34063. Да и при 500, 1000В пришлось применять более высокоомный делитель и как следствие применение операционных усилителей Rail-To-Rail.

Индикация осуществляется на жидкокристаллический дисплей. Для заряда аккумулятора применен контроллер заряда на TP4056 (отдельная платка 17х20 мм).

Устройство собрано на двухсторонней печатной плате из фольгированного стеклотекстолита, изготовленной по технологии ЛУТ. Не стоит пугаться слова «двухсторонняя».Распечатываются две картинки ПП низ и верх(зеркально). Совмещаются на просвет и скрепляются степлером в виде конверта. Вкладывается заготовка и сначала прогревается с двух сторон утюгом, затем с двух сторон тщательно проглаживается через два стоя писчей бумаги. Отпечатанную заготовку бросаем в емкость с теплой водой примерно на пол часа, затем пальцем под струёй теплой воды убираем остатки бумаги. После травления лудим в сплаве Розе. Сквозные отверстия для проводников выполнены медным луженым проводом диаметром 0.7 мм. Входы прибора выполнены из латунных трубок от старого мультиметра, поэтому можно применять штатные щупы от мультиметров, но желательно сделать самодельные с зажимами типа «крокодил».

Применены SMD детали, резисторы 5%, конденсаторы 10%. Нужно учесть, что это не омметр и не служит для точного измерения сопротивления, хотя точность в диапазоне 1К — 1М достаточно велика. Для повышения достоверности показаний весь диапазон измерения сопротивлений разбит на три. В прошивке применен oversampling. Использованы три делителя напряжения 1;10, 1:100 и 1:1000. Последний диапазон очень растянут, от 10 мОм до 100 мОм и при дискретности АЦП микроконтроллера 10 бит имеет очень крупный шаг, около 90 кОм. К тому же пришлось применить цепи защиты входом микроконтроллера и они вносят погрешность на двух верхних диапазонах. Ниже вы видите рисунки с результатами замеров.

Может кто-то захочет усовершенствовать прибор или более точно откалибровать, поэтому я прикладываю исходники. При калибровке подключаем точный резистор не хуже 1%, например 47 кОм и подбираем коэффициент для диапазона 10-100 кОм в строке:

Читайте также:  Открытки с декором своими руками

Шкала от 10 до 100 мОм очень не линейна, вначале показания занижаются kx2, а в конце диапазона завышаются kx1, поэтому подбираются два коэффициента аналогично, но резистор ставим 20 мОм, затем 47 мОм и затем 91 мОм:

С наилучшими пожеланиями, Самоделкин и Ю.Градов.

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Сделать мегаомметр своими руками

Доброе время суток Уважаемые.
Немного предисловия.
Понадобился мне для работы мегаомметр.Таскать по выездам отечественный стрелочный монстр с ручкой надоело,покупать хороший заводской цифровой — жаба давит,испробовав дешевую китайскую приставку к мультиметру(Приставка к токовым клещам DT266)- разочаровался во многом. но прежде всего хлипкость конструкции,раздельное питание с использованием не однотипных питающих элементов,и главное отсутствие стабильности показаний (при измерение одной и той же кабельной пары показания ,незначительно,но отличаются.
Изучив рунет,только совсем недавно обнаружил конструкцию «Бобер-2» на этом сайте. хотя речь не о нем сейчас. и все. Больше не одной похожей конструкции и близко.
И вот только недавно мне удалось разыскать в заграничном журнале SILICON CHIP
две конструкции одного прибора. но к сожалению там хотели денег. нашлись «добрые спонсоры» и помогли разыскать все для сборки этих приборов.

Если не ошибаюсь автор этих приборов Jim Rowe

Прибор 1(вариант первый)
Напряжение измерения 500 и 1000 вольт,предел измерения 999МОм










Прошивка и печатка в пдф в конце поста.

Прибор 2 (вариант второй) как оказалось по нему было сложнее всего найти информацию.
Напряжение измерения 250,500,1000 вольт,предел измерения 999МОм














Прошивка и печатка в пдф ниже

Надеюсь кому нибудь эта информация пригодится.

Добавил более качественными изображениями,лучше нет.

Сделать мегаомметр своими руками

  • Главная
  • Форум
  • Новости
  • Блог
  • Почта
  • Обратная связь
  • Ссылки
  • Сотрудничество
    • Авторам
    • Вебмастерам
  • Расчёты онлайн
    • Калькулятор номинала SMD резистора
    • Генератор символов для LCD HD44780
    • Расчёт делителя напряжения
    • Определение сопротивлений резисторов по цветовой маркировке
    • Расчёт сопротивления резистора для светодиода
    • Расчёт ширины дорожки печатной платы
    • Цветовая маркировка резисторов, конденсаторов и индуктивностей
    • Расчёт резонансной частоты колебательного контура
    • Калькулятор фьюзов AVR
    • Расчёт DC-DC преобразователя на базе MC34063A
    • Расчёт частоты таймера 555
    • Конвертер даты и времени в UNIX формат и обратно
  • Cхемы
  • Цифровые устройства
    • Автоматика
    • Программаторы
    • Таймеры, часы, счётчики
    • Для ПК
    • Для дома
    • Игрушки
  • Аналоговые устройства
    • Передатчики и приёмники
    • Генераторы
    • Усилители
    • Видео и ТВ
    • Регуляторы
  • Звукотехника
    • Усилители
    • Фильтры, эквалайзеры
    • Для музыкантов
    • Акустика
    • Разное
  • Светотехника
    • Мигалки
    • Освещение
    • Светоэффекты
  • Детектирование
    • Металлоискатели
  • Измерения
    • Осциллографы
    • Измерители L-C-R
    • Вольт/Амперметры
    • Термометры
  • Питание
    • Блоки питания
    • Преобразователи и ИБП
    • Зарядные устройства
    • Альтернативная энергетика
  • Arduino
  • Авто и мото
  • Станки с ЧПУ
  • Статьи
  • Антенны
    • WI-FI
  • Обучалка
    • Аналоговая техника
    • Цифровая техника
    • Микроконтроллеры
    • Аудиотехника
    • Видеотехника
    • Программные пакеты
    • Измерения
    • Разное
  • Секреты самодельщика
  • Файлы
  • Программы
    • CADs
    • Компиляторы, программаторы
    • Для печатных плат
    • Схемы, панели и шкалы
    • Расчёты
    • Разное
  • Книги
    • Verilog и VHDL
    • Цифровые устройства и МП
    • Математический анализ
    • Основы теории цепей
    • Теория вероятностей
    • РТ цепи и сигналы
    • Метрология
    • Микроконтроллеры
    • Программирование
    • Справочники
    • Схемотехника
    • Устройства СВЧ и антенны
    • РПДУ и УГФС
    • РПУ и УПиОС
    • РТС и СТРТС
    • Телевидение и видеотехника
  • Журналы
    • Радиомир
    • Радиоаматор
    • Радиолоцман
    • Радиолюбитель
    • Радиоежегодник
    • Радиоконструктор
  • Учебные материалы
    • Математический анализ
    • Теория вероятностей
    • РТ цепи и сигналы
    • Радиоавтоматика
    • Метрология
    • ОКиТПРЭС
    • Гуманитарные науки
    • Электроника
    • Цифровые устройства и МП
    • Электродинамика и РРВ
    • Схемотехника
    • УГиФС и РПДУ
    • Основы теории скрытности
    • Устройства СВЧ и антенны
    • УПиОС и РПУ
    • ЭПУ РЭС
    • Оптические устройства
    • ОКПиМРЭС
    • ССПРЭУС
    • РТС и СТРТС
    • СИТ
    • Телевидение и видеотехника
    • Разное
  • Документация
  • Микросхемы
    • 140
    • 143
    • 148
    • 153
    • 154
    • 155
  • Разъёмы
    • Типы разъёмов
    • Распиновка разъёмов
  • Datasheets
    • Analog Devices
    • Atmel
    • Microchip
    • NXP Semiconductors
    • Texas Instruments
  • Маркировка компонентов

Простой миллиомметр

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом ), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения — 200мВ, цена деления — 0,1 мВ. Входное сопротивление — около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.

Читайте также:  Пошаговая инструкция покраски автомобиля металликом своими руками

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения — 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.

Материал шпильки — сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы — обсудим.

Сделать мегаомметр своими руками

  • Вы здесь:
  • Главная
  • Уроки начинающим
  • Часть1 — Постоянный ток
  • 7. Измерительные приборы
  • 7. Высоковольтный омметр (мегаомметр)

7. Высоковольтный омметр (мегаомметр)

Высоковольтный омметр (мегаомметр)

Большинство омметров, конструкция которых рассмотрена в предыдущей статье, используют батарею низкого напряжения (обычно 9 вольт или меньше). Этого вполне достаточно для измерения сопротивлений величиной до нескольких мегаом (МОм). Но иногда возникает ситуация, когда необходимо измерить очень высокие сопротивления. В этом случае напряжения 9 — вольтовой батареи будет недостаточно чтобы создать такой поток электронов, который сможет привести в действие стрелку электромеханического индикатора.

Кроме того, ранее мы с вами говорили, что сопротивление не всегда представляет собой линейную величину. Это особенно верно для неметаллов. Вспомните график зависимости тока от напряжения для небольшого воздушного зазора (менее 2 см.):

Несмотря на то, что это экстремальный пример нелинейной проводимости, некоторые вещества показывают сходные свойства под воздействием высокого напряжения. Очевидно, что омметр использующий низковольтную батарею в качестве источника энергии не сможет измерить сопротивление при потенциале ионизации газа или при напряжении пробоя диэлектрика. Измерить такие величины сопротивлений сможет только высоковольтный омметр.

Самый простой высоковольтный омметр представляет собой ту же конструкцию, что была рассмотрена в предыдущей статье, только в ней обычная батарея заменена на батарею с более высоким напряжением:

Принимая во внимание то обстоятельство, что сопротивление некоторых материалов может изменяться в зависимости от приложенного напряжения, было бы целесообразно сделать источник напряжения омметра регулируемым. В этом случае у нас появится возможность измерять сопротивление в различных условиях:

К сожалению, такое решение создаст проблему с калибровкой прибора. Если стрелка индикатора отклоняется в конец шкалы при определенной величине тока, то при изменении напряжения данная величина тока также изменится, что нарушит калибровку шкалы. Представьте себе, что вы подключили к щупам омметра стабильное сопротивление и начали изменять напряжение источника питания: при увеличении напряжения ток через индикатор так же увеличится, что приведет к увеличению угла отклонения его стрелки. Отсюда можно сделать вывод что нам нужен индикатор, стрелка которого будет одинаково отклоняться при измерении одного и того же сопротивления, независимо от величины приложенного напряжения.

Для достижения этой цели требуется разработка специального индикатора, специфического для мегаомметров:

Пронумерованные прямоугольные блоки этого рисунка представляют собой поперечные сечения катушек индуктивности. Все три катушки перемещаются вместе с механизмом стрелки. В данной конструкции индикатора нет никакого пружинного механизма для возвращения стрелки в исходное положение, поэтому при отключенном источнике питания она перемещается случайным образом. Электрически катушки соединены между собой следующим образом:

При бесконечном сопротивлении между тестовыми проводами (разомкнутая цепь), ток будет проходить только через катушки 2 и 3. Под действием этого тока вышеуказанные катушки переместятся в промежуток между двумя полюсами магнита, отклонив тем самым стрелку индикатора в крайнее правое положение шкалы (обозначенное знаком «бесконечность»):

Любой ток через катушку 1 (через измеряемое сопротивление, подключенное к щупам прибора) будет отклонять стрелку индикатора в левую сторону. Значения внутренних резисторов подобраны так, что при замыкании тестовых проводов между собой стрелка прибора отклонится точно в нулевое значение шкалы.

Поскольку любые изменения напряжения источника питания могут повлиять только на крутящий момент двух наборов катушек (катушки 2 и 3 — отклоняющие стрелку вправо, и катушка 1 — отклоняющая стрелку влево), они не окажут никакого влияния на калибровку индикатора. Другими словами, точность этого прибора не зависит от напряжения источника питания: стрелка индикатора будет одинаково отклоняться при измерении одного и того же сопротивления, независимо от величины приложенного напряжения.

Единственный эффект, который окажет изменение напряжения источника питания на показания прибора — это изменение величины сопротивления некоторых материалов в зависимости от приложенного напряжения. К примеру, если мы будем использовать мегаомметр для измерения сопротивления газоразрядной лампы, то он покажет очень высокое сопротивление при низком напряжении, и небольшое сопротивление при высоком напряжении. Как-раз этого мы и ожидали от хорошего высоковольтного омметра: точное отображение сопротивления при различных обстоятельствах.

В целях обеспечения максимальной безопасности, большинство мегаомметров оборудованы ручными генераторами для получения высокого напряжения постоянного тока (до 1000 вольт). Если пользователь такого прибора получит удар током, то он естественно отпустит рукоятку генератора, вследствие чего подача напряжения прекратится. Иногда для стабилизации вращения генератора используются муфты скольжения, которые позволяют обеспечить стабильное напряжение. Уровни напряжения, вырабатываемого генератором можно изменять при помощи переключателя.

На следующей фотографии показан простой мегаомметр:

Для обеспечения большей точности выходного напряжения некоторые мегаомметры используют батарейное питание. По соображениям безопасности такие приборы активируются кнопочным выключателем с самовозвратом. Такой выключатель не может быть оставлен в положении «включено», чем обеспечивается защита пользователя от поражения электрическим током.

Реальные мегаомметры имеют три контакта, которые обозначаются Line (Линия), Earth (Земля) и Guard (Защита). Упрощенная схема такого прибора показана ниже:

Сопротивление измеряется между контактами Line (Линия) и Earth (Земля), где ток проходит через катушку 1. Контакт Guard (Защита) предназначен для особых ситуаций, в которых одно сопротивление должно быть изолировано от другого. Рассмотрим к примеру следующий сценарий, где нужно измерить сопротивление изоляции двухпроводного кабеля:

Чтобы измерить сопротивление изоляции между проводом и внешней стороной кабеля, нужно подключить контакт Line (Линия) к одному из проводов кабеля, а контакт Earth (Земля) — к проводу обернутому вокруг его внешней оболочки:

Если вы считаете что в такой конфигурации мегаомметр действительно покажет сопротивление изоляции между одним из проводов и и внешней стороной кабеля, то глубоко заблуждаетесь. Давайте нарисуем схему вышеописанной ситуации, где вместо всех сопротивлений изоляции подставим условные обозначения резисторов:

Судя по этой схеме, вместо измерения сопротивления между проводом 2 и внешней оболочкой кабеля (Rc2-s), мы измерим сопротивление последовательно-параллельной цепи, в которой параллельно к искомому сопротивлению подключена последовательная цепь состоящая из сопротивлений провод1 — провод2 (Rc1-c2) и провод2 — внешняя оболочка кабеля (Rc1-s). Если этот факт нас не волнует, то мы можем продолжать измерение. Если мы хотим измерить только сопротивление между проводом 2 и внешней оболочкой кабеля (Rc2-s), то нужно задействовать контакт Guard (Защита) нашего мегаомметра:

Теперь схема будет выглядеть следующим образом:

Подключение контакта Guard (Защита) к первому проводу практически уравнивает потенциалы обоих проводов. Напряжение между этими проводами практически будет отсутствовать, сопротивление изоляции будет бесконечным, а следовательно, между ними не будет и потока электронов. Отсюда можно сделать вывод, что показания мегаомметра будут базироваться исключительно на токе, проходящем через изоляцию второго провода, оболочку кабеля и обернутого вокруг нее провода.

Мегаомметр — это «полевой» прибор: он изготавливается в портативном исполнении и эксплуатируется пользователем как обычный омметр. Так как мегаомметры используют для своей работы высокие напряжения, они, в отличие от обычных омметров, не восприимчивы к паразитным напряжениям (напряжениям менее 1 вольта, возникающим вследствие электрохимических реакций между проводами, или индуцированным соседними магнитными полями).

Источник

Оцените статью
Своими руками