Пробники для проверки светодиодов своими руками
Автор: serg_svd
Опубликовано 11.05.2017
Создано при помощи КотоРед.
Предисловие.
Вы спросите: «Зачем нужен такой тестер?»
Периодически у радиолюбителя возникает небольшая проблемка при установке светодиода в ту или иную конструкцию. В основном она заключается в ответах на несколько простых вопросов:
— какой ток нужен для светодиода и как он будет светиться при выбранном токе (особенно в устройствах, где критична потребляемая мощность от источника питания);
— расчет гасящего резистора в цепи светодиода.
Несколько лет назад, увидев на aliexpress простейший тестер для светодиодов ценой в 2-3 USD, я захотел его приобрести.
Но после поиска информации о нем желание купить пропало. По сути это была коробочка с кучей разъемов, с питанием от 9 В батарейки. Питание светодиодов осуществлялось от этой батарейки через гасящие резисторы. Ерунда в общем…
Следующей мыслью было сделать самому простейший стабилизатор тока либо на LM317, либо на стабилизаторе 1117 и питать светодиод заданным током, а падение напряжения на нем измерять при помощи тестера. Но посчитав идею громоздкой и неудобной, я отказался от нее.
И вот недавно я случайно наткнулся на вот эту статью https://robotroom.com/LED-Tester-Pro-1.html.
Автор этой статьи пошел этим же путем. Причем он также вначале делал просто плату стабилизатора тока, а измерял ток и падение напряжения тестером. Но также, посчитав это неудобным, он применил микроконтроллер для измерения вместо тестера. Идея мне очень понравилась. Но, так как автор не выкладывал прошивку, пришлось писать ее самому. Заодно и изучил использование АЦП в микроконтроллере. По функционалу получившийся тестер на 99% аналогичен тестеру, приведенному в статье. Я добавил режим индикации короткого замыкания на измерительных площадках для подключения светодиода.
Тестер умеет:
— измерять и выводить на дисплей падение напряжения на светодиоде или p-n переход;
— измерять и выводить на дисплей протекающий через светодиод ток;
— рассчитывать сопротивление гасящего резистора в цепи светодиода при заданном напряжении источника питания (режим встроенного калькулятора);
— отображает приглашение на подключение светодиода;
— отображает короткое замыкание клемм.
В качестве микроконтроллера применил ATmega8A в корпусе TQFP . Он был в наличии. Вообще в устройстве постарался применить детали, которые можно наковырять с б/у материнских плат и прочего компьютерного (и не только) барахла. Дисплей 8х2 тоже был в наличии. Я использовал без подсветки, чтобы не тратить энергию батареи.
Долго думал с питанием. У автора применена 9 В батарея. Я их очень не люблю. И в первую очередь от ее цены, а во вторую – из-за ее емкости. После взвешивания всех «За» и «Против» пришел к выводу, что не стоит городить питание от лития. И тем более использовать элементы АА или ААА. Данный тестер действительно нужен нечасто и одной батарейки хватит на несколько лет в обычной радиолюбительской практике.
Напряжение с батареи через выключатель подается на стабилизатор тока, выполненный на микросхеме U2. Применен регулируемый стабилизатор, который выпаян с первой попавшейся б/у материнки. С нее же взяты все конденсаторы 100нФ типоразмера 0603, конденсатор 1 мкФ (1… 10 мкФ, что найдете) типоразмера 0805, резисторы 10 кОм типоразмера 0603.
Желательно применить в качестве резисторов R3, R4, R5 резисторы с 1% точностью.
Резистором R1 регулируется ток. Пределы регулировки составляют от 2 до 26 мА, что вполне достаточно для большинства светодиодов.
Стабилизатор U1 обеспечивает питанием микроконтроллер. Вместо указанного на схеме можно применить любой LDO стабилизатор с выходным напряжением 5 В.
Измерение протекающего через светодиод тока и падения напряжения на нем возложено на микроконтроллер ATmega8A. Вся информация отображается на вот на таком LCD дисплее.
Так как на нем мало места, это повлияло на способ отображения информации. В частности применен такой же символ «мА» для указания тока и ограничена величина напряжения источника питания, которая задается для калькулятора, на уровне 9,9 В.
Резисторы R8, R9 на схеме указаны без номинала. Их надо предварительно подобрать по необходимому контрасту на дисплее. Для моего индикатора (как впрочем и для большинства китайских дисплеев) R8 не установлен, а в качестве R9 установлена перемычка.
Резистором R6 задается напряжение источника питания для калькулятора.
Тестер отображает следующие данные.
В первой строчке отображается падение напряжения на светодиоде и ток, протекающий через него.
Во второй строчке – расчетное напряжение источника питания светодиода и минимальное расчетное сопротивление гасящего резистора на основе измеренных параметров светодиода.
Расположение элементов на плате.
Сторона деталей (верх платы)
Фото собранной платы.
После отмывки и проверки монтажа к плате припаивается дисплей.
Русского языка нет, так как не получилось придумать коротких названий без сокращений, чтобы влезали на этот дисплей.
PS. На фото отсутствует подстроечный резистор R1 500 Ом. Еще не приехал от китайских товарищей. Вместо него временно перемычка, поэтому ток максимальный.
Чертежи платы и схемы в программе Diptrace, а также прошивка в прикрепленном файле.
Ну и напоследок хочу показать очень интересный тестер от китайских товарищей (НЕ РЕКЛАМА! Я бы сам собрал с удовольствием такой же, если была бы схема).
Который позволяет проверять как отдельные светодиоды так и линейки из светодиодов. И может выдавать напряжение где-то до 200 В автоматически. Подробнее о нем можно почитать в интернете https://mysku.ru/blog/china-stores/40849.html
У него один недостаток – цена в районе 3,5 тыс. руб. И он больше пригодится ремонтнику, чем простому радиолюбителю.
Источник
Falconist. Мемуары
Автономный тестер стабилитронов и светодиодных линеек
Запись опубликована Falconist · 5 апреля 2020
6 095 просмотров
Здесь я описывал простой тестер стабилитронов и светодиодов в виде приставки к блоку питания + мультиметру. Работает нормально, но в эксплуатации несколько неудобен из-за необходимости привязки к БП. А тут совпали два момента: первый — не пришла посылка из Китая на три 3-проводных вольтметра, я выкатил претензии продавцу и он послал товар повторно, но я успел перезаказать такие же вольтметры у другого продавца. И пришли обе посылки. Второй — самоизоляция, когда сидя дома подгоняю старые проекты.
Полазил по сусекам, нашел заваренный трансформатор для питания электронных часов «Электроника» (перемотать не получится),
корпус от китайского адаптера с сетевой вилкой заподлицо с корпусом (в евророзетку уже не вставить без переходника), поэтому вилка была тупо удалена
ну, и остальные деталюшки.
Схема, в общем-то, ничего особенного собой не представляет:
Трехпроводной вольтметр реально может измерять до 99,9 В, если питать его от 3. 4 В, что и было реализовано. Ток потребления от этого напряжения составляет 20 мА. Напряжение, подаваемое на стабилизатор тока, выпрямленное диодным мостом, составляет 50 В, а схемой удвоения — 100 В, чего более, чем достаточно для большинства стабилитронов, даже высоковольтных, ну, и для светодиодных линеек. Ток составляет 8 мА, что я тоже посчитал достаточным для поставленной задачи.
Печатная плата, поскольку устройство изготовлялось в единичном экземпляре и «для себя», делалась методом рисования иглой от шприца лаком для ногтей. Для таких простых плат не вижу никакого смысла заморачиваться с ЛУТ, а тем более, с фоторезистом.
Подчеркиваю в очередной раз: ПЛАТА ДЕЛАЕТСЯ ПОД КОРПУС. А не наоборот
Монтаж в корпусе:
Ну, и «изюминка на торте»: стабилитрон на 11,6 В. К сожалению, вспышка забила индикацию.
При настройке неожиданно столкнулся с неприятным эффектом. В исходном состоянии транзисторы VT1 и VT4 были типов КТ361Б/КТ315Б. Как только к контактам был подключен стабилитрон, пробились их базово-эмиттерные переходы, хотя в LED-тестере работают безукоризненно. Пробились также 50-вольтовые 2SA1015/2SC1815. Пришлось ставить 120-вольтовые, с которыми устройство и работает. Почему так произошло — буду выяснять. Собственно, как раз из-за этого наблюдения я и сделал данную запись, т.к. по другому она и на пост не сильно тянула.
Добавлено:
По рекомендации К.Мороза (статья под спойлером) добавил между базами VT2 и VT3 конденсатор на 0,1 мкФ. Запускаться стабилизатор стал стабильно, ток держит 8,3 мА, НО! при тестировании стабилитронов сжег ТРИ из них . При подключении даже была видна искра. Т.е., любая емкость в цепи стабилизатора тока является убийцей тестируемых деталей. Емкость конденсатора оказалась достаточной 22 нФ, НО! (опять это проклятое «но». ) искра при замыкании электродов всё равно проскакивала. Пришлось последовательно со стабилизатором тока ставить токоограничительный резистор R5.
Источник
Тестер светодиодов и стабилитронов своими руками
В ремонтной мастерской часто нужно проверять на исправность различные как одиночные светодиоды так и линейки светодиодов и светодиодные матрицы. Для быстрой проверки таких светодиодных сборок существует приборы для проверки сразу всей матрицы или линейки светодиодов, что ускоряет ремонт, он на выходе, на своих щупах выдаёт напряжение более 200В, при очень низком токе, что позволяет при таком высоком напряжении проверить даже единичный светодиод с низким напряжением не выводя его из строя.
Подобные тестеры стоят к сожалению не дёшево и они обычно подключаются сетевым шнуром к розетке. Но Вы можете собрать тестер светодиодов сами и это не сложно на самом деле и большим его плюсом будет по сравнению с коммерческим прибором это то, что он абсолютно автономный, имеет встроенный аккумулятор. Кроме проверки светодиодов прибор умеет также проверять стабилитроны, на индикаторе тестера при этом указывается рабочее напряжение стабилизации, а низкий ток на выходе прибора не повредит его при проверке. При подключении же светодиода или линейки светодиодов на индикаторе будет высвечиваться номинальное рабочее напряжение светодиода или суммарное всей линейки.
Детали которые нужны для создания тестера светодиодов:
- Транзистор IRF840 или подобные мощные, например IRF740;
- Импульсный диод FR107 или UF4004;
- Резистор 1 кОм;
- Резистор 100 кОм (подойдёт любой до 150 кОм);
- Резистор 330 кОм;
- Конденсатор пойдёт из энергосберегающей лампы которые там обычно стоят с напряжением в 400В, ёмкость может быть от 4,7 до 10 мкФ;
- Ферритовый стержень 8х32 мм, был взят от дросселя БП от компьютера;
- Li-Ion аккумулятор на 3,7 В;
- Намоточный провод в лаковой изоляции диаметром – 0,8 мм;
- Намоточный провод в лаковой изоляции диаметром – 0,5 мм.
- Мини-вольтметр, можно заказать такой на Aliexpress;
- Модуль защиты и зарядки аккумулятора TP4056, купить такой на Aliexpress;
- Корпус от зарядки для телефона (или любой другой подходящий по габаритам).
Тестер светодиодов и стабилитронов своими руками
Как сделать тестер светодиодов и стабилитронов, пошаговая инструкция:
Изолируем ферритовый стержень малярным скотчем, хватит 2-х витков скотча. После этого наматываем первичную обмотку проводом 0,8 мм, начало обмотки, чтобы не разматывалась я зафиксировал суперклеем. У меня получилось 44 витка, столько уместилось на стержне, наматывал я первую обмотку по часовой стрелке.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Далее снова наматываем малярный скотч в два слоя для межслойной изоляции.
Тестер светодиодов и стабилитронов своими руками
Теперь наматываем вторичную обмотку проводом 0,5 мм в том же направлении (по часовой стрелке), для этого кончик обмотки можно смотать с концом первичной обмотки, это и будет средняя точка трансформатора.
Тестер светодиодов и стабилитронов своими руками
Получилось намотать первый слой вторичной обмотки 54 витка, теперь нужно опять проложить межслойную изоляцию и продолжаем мотать дальше следующий слой этим же проводом, затем опять слой изоляции и снова 3-тий слой этим же проводом и того получится во вторичке в общем счёте – 162 витка.
Тестер светодиодов и стабилитронов своими руками
В конце можно заизолировать верхнюю обмотку всё тем же малярным скотчем. Получился довольно компактный трансформатор.
Тестер светодиодов и стабилитронов своими руками
Паяем прибор по схеме:
Тестер светодиодов и стабилитронов своими руками
Я пока для проверки спаял всё навесным монтажом. Припаял к собранной схеме щупы, чтобы можно было удобно проверять светодиоды. А также подпаял аккумулятор.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
После включения питания на выходе (на щупах) без нагрузки получилось почти 500В. Если нужно меньшее напряжение то можно уменьшить количество витков вторичной обмотки, отмотав некоторое количество витков.
Тестер светодиодов и стабилитронов своими руками
Теперь можно протестировать работу прибора для проверки светодиодов и стабилитронов на каком-нибудь простом светодиоде, как видим он засветился и всё работает как надо хоть и напряжение на выходе щупов достаточно большое, всё от того, что ток очень мизерный.
Тестер светодиодов и стабилитронов своими руками
Теперь можем проверить и что-то по более прожорливое, то есть линейку из последовательно включенных светодиодов и как видим тоже всё работает отлично.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Или же вот работа прибора со светодиодной лампой на 220В.
Тестер светодиодов и стабилитронов своими руками
Здесь я подключил вольтметр к выходу прибора и он показывает, что номинальное напряжение всей линейки светодиодов в лампе составляет 218В.
Тестер светодиодов и стабилитронов своими руками
А на маленьком светодиоде показывает падение 1,92В.
Тестер светодиодов и стабилитронов своими руками
Когда убедились, что наш прибор для проверки светодиодов и стабилитронов работает можем приступать к его облагораживанию, добавить китайский маленький вольтметр, плату защиты и заряда аккумулятора, а также выключатель питания и разместить всё в подходящий корпус. Я в качестве корпуса для тестера светодиодов взял корпус от старого зарядника для телефона, получилось одень даже неплохо, тестер для светодиодов, линеек светодиодов и стабилитронов сделанный своими руками готов!
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Источник