Приставки для мультиметра своими руками схемы

Приставки к мультиметру схемы

Конструкция самодельной приставки состоит из регулируемого повышающего преобразователя напряжения с питанием от 5 В блока питания или USB; Генератора прямоугольных импульсов DD1.1 с частотой следования 15 кГц; Дифференцирующей цепочки на СЗ и VT1 и инвертора на элементах DD1.2—DD1.4.

Прямоугольные импульсы с генератора DD1.1 через дифференцирующую цепочку проходят на входы DD1.2. Сильнее открывая VT1, можно «уменьшить» импульсы на его входах. Инвертируемые импульсы через резистор R3 подаются на базу транзистора VT2. То есть если на выходах инвертора единица, транзистор VT2 открыт и через дроссель L1 начинает течь ток, а энергия накапливается в его магнитном поле. При «нуле» транзистор VT2 закрыт и на L1 формируется импульс напряжения самоиндукции, который выпрямляется диодом VD1 и сглаживается конденсатором С5. Чем длиннее импульс, приходящий на VT2, тем выше уровень энергии накапливаемый в дросселе и тем выше напряжение с выхода выпрямителя.

В начальном состоянии скважность импульсов генератора около двух и напряжение на выходе выпрямителя максимальное. Оно поступает на VT1 через делитель на резисторах R2-R4, VT1 открывается и длительность импульса, идущего на базу VT2 становится меньше, как и напряжение на выходе выпрямителя. Таким образом осуществляется стабилизация напряжения на выходе выпрямителя в диапазоне 55-60 В. Регулировать выходное напряжение можно резистором R4.

Для проверки стабилитрона к приставке подсоединяют мультиметр на режиме постоянного тока. Проверяемый стабилитрон подсоединяют к гнёздам XS1, переключатель SA2 устанавливают в положение «Стаб.». Если стабилитрон рабочий и его напряжение стабилизации не превышает 50 В, ток проходящий через него возрастает и загорается светодиод HL1, транзистор VT1 откроется еще сильнее и напряжение на выходе выпрямителя станет меньше. В данном случае напряжение на стабилитроне будет соответствовать напряжению стабилизации, которое и измеряем мультметром. Так как мы знаем полярность, то легко понять назначение выводов стабилитрона. Если подсоединить стабилитрон в прямом включение, то VT1 откроется полностью, и прямоугольные импульсы перестанут поступать на DD1.2 и питание на выпрямитель поступает от 5 вольтового блока питания.

Для проверки динистора его подключают к разъему XS2, напряжение на который подается через RC-цепь R6-C7 или R7-C6. В исходном состояние SA1 переключают в режим «Пров.», a SA2 — в режим «Дин.». Если динистор работает нормально, он вместе с RC-цепью R6-C7 входит в состав релаксационного генератора с частотой следования импульсов несколько герц. Как только напряжение на конденсаторе С7 достигнет уровня открывания динистора. Он быстро разрядится через резистор R5 и светодиод HL1, который при этом кратковременно вспыхнет. Из-за того, что частота следования импульсов невелика конденсатор С4 не в состояние поддерживать постоянное напряжение на базе VT1, поэтому напряжение на выпрямителе нестабильно. Этот режим хорошо подходит для проверки работоспособности динистора, но если уровень открывания динистора больше 55 В, релаксационный генератор уже не работает.

Чтобы замерить уровень открывания динистора, разъем XS2 переключают к цепи R7-C6. При этом частота следования импульсов в релаксационном генераторе возрастает как минимум в несколько раз, и конденсатор С4 спокойно поддерживает требуемое напряжение на транзисторе VT1. И он остается открытым, поэтому выходное напряжение выпрямителя соответствует напряжению открывания динистора. Именно его мы и можем померить нашим мультиметром.

Используемые радиодетали показаны на схеме, в случае их отсутствия используйте радиолюбительские справочники для их замены. Светодиод желательно использовать сверхяркий. Дроссель типа RLB0608, можно использовать и самодельный.

Конструкция печатной платы приведена на рисунке ниже, для ее самостоятельного изготовления рекомендую использовать технологию ЛУТ

Смотри также альтернативный вариант приставки к мультиметру для проверки стабилитронов

В современных схемах роль конденсаторов заметно возросла, т.к увеличились и мощности и частоты работы устройств. И поэтому очень важно проверять ESR у всех конденсаторов перед сборкой схемы или во время диагностирования неисправности.

Equivalent Series Resistance — эквивалентное последовательное сопротивление это сумма последовательно соединенных омических сопротивлений контактов выводов и электролита с обкладками электролитического конденсатора.

Принцип работы приставки к мультиметру заключается в следующем. Напряжение треугольной формы подается на измеряемую емкость, при этом ток идущий через нее имеет форму меандра, а его амплитуда пропорциональна измеряемой емкости. В случае измерения индуктивности через нее пропускается ток треугольной формы, падение напряжения на индуктивности имеет форму меандра и пропорционально ее величине. Подробней смотри в журнале схемотехника март 2003 года.

В радиолюбительской практике иногда требуется измерить малые сопротивления значение которых ниже 1 Ом, например, в случае проверки обмоток трансформаторов на короткое замыкание, контактов реле, различных шунтов,. Как же осуществить измерение малых сопротивлений величиной в милиомы или микроомы? Как известно из курса электротехники, измерение сопротивлений основано на эффекте преобразовании их величины в ток или напряжение.

Эта схема приставки позволяет превратить обычный мультиметр в простой дозиметр, который очен удобен в бытовой эксплуатации и эффективен

Как и в большинстве конструкций самодельных дозиметров основным элементом в этой приставке к мультиметру является счетчик Гейгера СБМ-20, да и любой лругой можно приспособить. В качестве индикатора используется мультиметр DT9208A или с аналогичной функцией измерения частоты.

Так как напряжение счетчика Гейгера более 400 вольт, требуется повышающий преобразователь. Он выполнен по типу блокинг-генератора на радиокомпонентах VT1, Т1, С1, С2 и R1. С повышающей обмотки трансформатора Т1 импульсное напряжение следует на выпрямитель, на диодах VD1, VD2 и емкость СЗ. Преобразователь повышает напряжение до уровня 420. ..460 В. Катод датчика СБМ-20 подсоединен через цепь, сформированную параллельным подключением мультиметра и конденсатора С4.

При прохождении радиоактивной через датчик , внутри его осуществляется ионизация газа и на выходе генерируется электрический импульс.

Трансформатор изготавливается на броневом сердечнике типа Б22, феррит 2000НМ. III обмотка состоит из 700 витков, провода ПЭВ-2 диаметром 0,1 мм. В процессе намотки через каждые 100 витков прокладываем слой трансформаторной бумаги или анологичную изоляцию. После намотки обмотку опять изолируем. Поверх нее наматывают еще две обмотки I и II двойным сложенным проводом по 14 витков, проводом ПЭВ-2 диаметром 0,2 и 0,4 мм. Средней точкой будет начало обмотки I и конец II.

Источник

ПРИСТАВКИ К МУЛЬТИМЕТРУ

На сайте уже немало конструкций самодельных приставок к старым добрым мультиметрам типа DT830 и иже с ними, но есть одна проблема — они разбросаны по разным рубрикам, поэтому решено собрать их на одой странице для пущего удобства и наглядности.

Приставка металлоискатель к мультиметру

Далее цитата об этой приставке: этот прибор собирал, работает отлично, 5 копеек СССР свободно за 17 см берёт, но это по воздуху. Крупный металлический предмет около метра, ну и конечно есть недостатки — через каждые час-полтора приходится подстраивать резистор подстроечный СП-5 на 300 Ом в эмиттерной цепи, вот и вся настройка. Зато плюсов больше, нет никакой реакции на грунт, что руда — что песок, катушку не экранировал, питание одной кроны на месяц хватает. Конденсатор С3 обязательно не электролит. Резистор в датчике R1 установить 4,7 кОм и последовательно с ним 4,7-10 ком многооборотный типа СП-5, включаем прибор, если прибор реагирует на метал — крутить резистор пока он перестанет реагировать, затем в обратную сторону медленно, но постоянно, и когда генератор попадет в рабочий режим — услышим щелчок — это и есть его рабочая точка. Что касается катушки, 3-х литровая банка, намотано 200 витков с отводом от середины проводом 0,3 — 0,4, особой разницы нет, можно и 0,6, но тогда катушка тяжеловатая. В общем прибор работает супер! Подробнее здесь.

Приставка тестер оптопар к мультиметру

Для проверки исправности оптопар (например популярных РС817) есть и способы проверки и схемы проверки. И удобнее оформить прибор как приставку к мультиметру. Схема имеет световую индикацию о исправности, добавлено также измерение падения напряжения мультиметром. Подробнее здесь.

Приставка измеритель ЭПС к мультиметру

Так как на микроконтроллерные устройства замахиваться многим пока сложно — вот самая простая схема ЭПС-метра приставки на микросхеме 561ЛН2. Подробнее здесь.

Приставка ВЧ детектор к мультиметру

Простейшая схема приставки к цифровому мультиметру для измерения переменного тока ВЧ. Подходит для замера мощности усилителя звука или радиопередатчика. Мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей высокочастотный детектор на германиевых диодах. Эта схема выпрямляет и фильтрует переменное напряжение сигнала, превращая его в легко измеряемую постоянку.

Входная емкость ВЧ-головки менее 3 пФ, что позволяет её подключать прямо к контуру каскада. Можно использовать высокочастотные советские диоды Д9, ГД507 или Д18. ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь с тестером должна быть при помощи экранированного ТВ кабеля.

Приставка детектор радиоизлучения к мультиметру

Такое дополнение к вольтметру позволяет превратить высокочастотное излучение в постоянный ток для оценки мощности радиопередатчиков или раций.

Достаточно поднести антенну рации к антенне детектора, нажать на передачу и мультиметр покажет цифры — чем мощнее сигнал от радиопередатчика, тем больше показания на дисплее мультиметра.

Приставка термометр к мультиметру

Ну а тут и говорить нечего — собрали как по схеме с датчиком LM35 и всё, пошло измерение температуры на режиме вольтметра.

Приставка наноамперметр к мультиметру

В этом устройстве использовался усилитель TS1001. Особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В. Подробнее здесь.

Приставка тестер светодиодов к мультиметру

Размещаем на свободное место на плате схематичное изображение светодиода, которое ориентируем согласно схеме подключения, при которой светодиод будет функционировать. Подсоединяем к мультиметру. Устанавливаем предел измерения 20 В постоянного напряжения. Подсоединяем источник питания и проверяемый светодиод, нажимая кнопку включения. Подробнее здесь.

Приставка миллиомметр к мультиметру

Работа схемы приставки миллиомметра основана на определении падения напряжения на предмете измерения, при протекании через него фиксированного тока. Ток формируется генератором на транзисторе. Работой транзистора управляет усилитель на микросхеме TL062, которая питается стабилизированным напряжением от микросхемы 78L05. Предел измерений изменяется при помощи переключателя SA1. Диод, подключённый параллельно объекту измерения предохраняет мультиметр при включении приставки без измеряемого компонента. Особо следует заметить, что кнопка SB1 включается только исключительно на время проведения измерений. От себя добавил в схему светодиод с ограничивающим резистором номиналом 1,2 кОм для индикации включения. Подробнее здесь.

Как видите, купить такой себе супер-универсальный измеритель в стиле «швейцарский многофункциональный нож», где была бы возможность мерять всё и вся — невозможно. Но возможно потратить немного времени и деталей, собрав на базе даже самого бюджетного мультиметра, достаточный для своих целей прибор. А если у вас есть и свои наработки по этой теме, то присылайте на почту — добавим в статью, пополнив общую копилку знаний.

Источник

Приставка к мультиметру для измерения малых индуктивностей без дополнительного источника питания

Имеющийся у меня уже несколько лет мультиметр М8908 измеряет индуктивности, но малые величины (менее 100 мкГн) на низшем пределе 2000 мкГн измерить практически невозможно, так как результат становится соизмерим с погрешностью прибора. Мое внимание привлекло ВИДЕО Артема Касицына «Приставка для измерения индуктивности к мультиметру на таймере 555». Здесь прямой отсчет измеряемой величины индуктивности, без пересчета по формулам.

Правда, имея осциллограф С1-49, автор не указал никаких данных (потребляемый ток, частота и амплитуда импульсов генератора), необходимых для повторения и настройки конструкции.
Чтобы измерить эти параметры пришлось собрать задающий генератор по схеме автора на макете. Оказалось: частота генератора около 50 кГц, амплитуда импульсов на выходе 3,5 вольта при питании 5 вольт.

Основной задачей было избавиться от источника питания приставки 9 вольт. После обследования моего мультиметра выяснилось, что на гнездах «Е» — эмиттер p-n-p колодки транзисторов присутствует стабилизированное напряжение +3 вольта (относительно вывода «COM»).

Из трех имеющихся у меня мультиметров в режиме измерения «200 мв» на выходе транзисторов в гнезде «Е» p-n-p на двух имелось напряжение +3 вольта. Это М8908 и MAS830L. В мультиметре DT830B напряжение +3 вольта появлялось только в режиме измерения усиления транзисторов – он не подходил для питания приставки.
Получилась вот такая схема с питанием от самого мультиметра.

Задающий генератор из-за низкого напряжения питания 3 вольта пришлось собрать на двух элементах микросхемы К561ЛН2, остальные элементы микросхемы работают как буферные каскады. Правая часть схемы осталась без изменений, за исключением диода Д18ВП. Он показал себя значительно более чувствительным и линейным из полутора десятков различных типов диодов. Для получения точных показаний при измерении индуктивностей ниже 30 мкГн параллельно резистору 8,2 кОм следует подобрать конденсатор 4,7 – 6,8 пФ в уже готовой конструкции. Отверстий на печатной плате для него нет, пришлось досверливать. На эмиттерах транзисторов амплитуда меандра составила 2 вольта при частоте 55 кГц. Увеличение емкости в базовой цепи транзисторов с 1000 пФ до 4700 пФ позволило поднять напряжение на индуктивности во время проведения измерений более, чем на 10%. Напряжение меандра 2 вольта на эмиттерах оказалось достаточным для калибровки приставки. Так, при измерении заводской (эталонной) индуктивности 100 мкГн на милливольтметре можно было выставить переменным резистором 50 кОм напряжение до 130 мВ, то есть запас по чувствительности 30%. Работоспособность задающего генератора сохраняется при снижении напряжении питания до 2,4 вольта – это для справки. В мультиметре стабилизированное напряжение 3 вольта.

После всех доработок приставка точно показывала величину заводских (эталонных) индуктивностей (в пределах их допустимой погрешности) от 5 до 140 мкГн . Ниже двух мкГн импульсы на катушке малы и не открывают даже германиевый Д18. Измерить такую катушку можно включив ее последовательно с заведомо известной 10-20 мкГн.
Настройка такая же, как в оригинале – по имеющейся заводской индуктивности выставить с помощью переменного резистора 50 кОм ее величину на милливольтметре мультиметра. В моем случае это 100 мкГн.

Приставка собрана в корпусе от старого аккумулятора фонарика размерами 45*25*21 мм и снабжена тремя проволочными выводами: «+3вольта», «общий СОМ» и «вход милливольтметра». Ток, потребляемый приставкой без подключенной индуктивности менее 0,5 мА, а наибольший (до трех мА) – при измерении индуктивности менее 15 мкГн, что совершенно не нагружает внутренний стабилизатор напряжения мультиметра.

Такая конструкция получилась в итоге.

В заключении хочется отметить, что в приставке важна стабильность задающего генератора по частоте и амплитуде, а не значение самой частоты. Теоретически при повышении частоты до 500 – 700 кГц значения измеряемых индуктивностей сдвинутся в пределы 0 – 20 мкГн.

Источник

Читайте также:  Как украсить свитер пайетками своими руками
Оцените статью
Своими руками