Приставка к мультиметру для проверки стабилитронов
И. АНКУДИНОВ, п. Алексеевен Иркутской обл.
При разборке радиоаппаратуры радиолюбители обычно не выбрасывают демонтированные детали, надеясь на дальнейшее их использование. Часть из них имеет маркировку, что позволяет их идентифицировать. Некоторые элементы можно определить по внешнему виду или с помощью мультиметра (резисторы, конденсаторы, катушки индуктивности, светодио-ды и т. д).
Идентификация стабилитронов оказывается затруднительной, поскольку для этого необходим источник напряжения, превышающий напряжение стабилизации. Большинство стабилитронов, применяемых радиолюбителями, имеют напряжение стабилизации 3. 15 В, поэтому подойдет источник с напряжением 15. 20 В. Сделать такой источник компактным и легким можно, применив один гальванический элемент с повышающим преобразователем напряжения. Предлагаемое устройство поможет выявить из диодной группы такие элементы, как стабилитроны и определить их основной параметр — напряжение стабилизации. Его схема показана на рис. 1, и конструктивно оно выполнено в виде приставки к цифровому мульти-метру. В устройстве применен модуль преобразователя напряжения от калькулятора «Электроника МК-24». Он представляет собой законченную конструкцию в корпусе размерами ЗОх13*8 мм и залит эпоксидной смолой. У него три вывода, имеющих обозначения «+», «-» и «VBbo», на корпусе имеется маркировка КФ-29. При подключении к выводам питания гальванического элемента типоразмера АА (1,5 В) на выводе «V^» присутствует постоянное напряжение около 15 В. Работоспособность модуля сохраняется при уменьшении питающего напряжения до 0,8 В. Резистор R1 совместно с испытуемым стабилитроном, который подключают к контактным площадкам Х1 и Х2, образуют параметрический стабилизатор напряжения.
Цифровой мультиметр М-830. М-838 или аналогичный устанавливают в режим измерения постоянного напряжения на пределе 20 В и подключают с соблюдением полярности к гнездам XS1 и XS2. При отсутствии подключаемого элемента мультиметр должен показать выходное напряжение преобразователя. Выводы тестируемого элемента соединяют с контактными площадками Х1 и Х2, если это стабилитрон и он соединен анодом с минусом, а катодом с плюсом, то мультиметр покажет напряжение стабилизации данного стабилитрона. При обратном подключении его выводов показания будут не более 0,7 В. Если показания при подключении элемента в одной полярности не изменяются, а в другой не превышают 0,7 В — это диод или стабилитрон с более высоким, чем 20 В, напряжением стабилизации. Для симметричного стабилитрона в обоих случаях показания будут одинаковыми и меньше выходного напряжения преобразователя. Если показания муль-тиметра близки к нулю в обоих направлениях подключения, испытуемый элемент (диод или стабилитрон) пробит. При максимальных показаниях в обоих вариантах подключения тестируемого элемента — обрыв.
Устройство собирают на печатной плате из двусторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Одна сторона является лицевой панелью на которой сделаны контактные площадки Х1 и Х2. На второй стороне монтируют детали методом поверхностного монтажа без сверления отверстий. Их выводы укорачивают и припаивают непосредственно к печатным проводникам. Через отверстия в плате контакты Х1 и Х2 соединяют с контактными площадками второй стороны.
Контактные пластины для установки гальванического элемента изготовляют также из двусторонне фольгированного стеклотекстолита, зачищают, залужи-вают и припаивают к печатным проводникам платы. К минусовой пластине, для улучшения контакта с элементом питания, припаивают пружинящий лепесток. Преобразователь напряжения КФ-29 приклеивают к плате, а его выводы припаивают к соответствующим контактным площадкам. Гнезда XS1 и XS2 подбирают по диаметру щупов мультиметра и закрепляют на плате гайками. Гнезда можно использовать любые из имеющихся в наличии, изменив способ их крепления Выключатель питания SA1 — любой малогабаритный движковый.
При отсутствии модуля КФ-29 преобразователь можно собрать по схеме, приведенной на рис. 3. На транзисторе VT1 и трансформаторе Т1 собран бло-кинг-генератор. Импульсы напряжения с коллектора транзистора VT1 выпрямляются диодом VD1, сглаживаются конденсатором СЗ. Постоянное напряжение через резистор R1 поступает на гнезда XS1 и XS2. Элементы этого преобразователя монтируют на аналогичной плате, причем лицевая панель не меняется а печатные проводники и монтаж на второй стороне выполняют в соответствии с рис. 4.
В устройстве применены резисторы МЛТ, С2-33, оксидные конденсаторы С1 и СЗ — импортные, С2 — К10-17. Для изготовления трансформатора Т1 используют ферритовое кольцо типоразмера К10*6хЗ мм магнитной проницаемостью 1000. 2000, грани которого предварительно притупляют с помощью надфиля и обматывают тонкой виниловой лентой. Первичная обмотка содержит 20 витков, а вторичная — 10 витков провода ПЭВ-2 0,31 Диод 1N5817 заменим на 1N5818, 1N5819. Транзистор — КТ3102 с любым буквенным индексом Выключатель SA1 — любой малогабаритный движковый.
После монтажа устанавливают гальванический элемент и включают SA1. Если собранный преобразователь не начинал работать, необходимо поменять местами выводы одной из обмоток трансформатора Т1. Внешний вид приставки показан на рис. 5. Ее можно использовать и со стрелочным мультиметром.
Источник
Проверяем стабилитрон — простая приставка к мультиметру
Радиолюбители иногда затрудняются определить основной параметр попавшего к нему стабилитрона – его фактическое напряжение стабилизации. Для этого имеется несколько причин. Отсутствие маркировки (особенно на современных миниатюрных импортных деталях), нестабильность параметров детали даже в одной партии, в отдельных случаях для расшифровки маркировки требуется найти определенный справочник. Иногда нужно просто отличить стабилитрон от обычного диода, так как оба элемента имеют похожий внешний вид.
На практике, отличить стабилитрон от обычного диода и узнать его рабочее напряжение, можно с помощью приставки к мультиметру. Кроме того, при выполнении ремонтных работ часто бывает необходимо проверить стабилитрон на пригодность. В этой ситуации, в большинстве случаев, может оказать помощь простая приставка к мультиметру (вольтметру), предлагаемая к рассмотрению.
Основным достоинством этой приставки, является возможность стабилизации малых токов, а это основной диапазон стабилитронов малой мощности применяемых сегодня.
Предлагаемая приставка позволяет проверять напряжение стабилизации деталей в пределах 1…25 В, при неизменном рабочем токе стабилизации, который можно установить вручную в диапазоне от 2,0 до 100 мА.
Проверить работоспособность полупроводников можно с помощью универсального ESR тестера радиокомпонентов. Однако в нем стабилитроны проверяются как обычные диоды, поэтому тестер не поможет вам определить напряжение стабилитрона. Для этого можно будет использовать приставку, собранную по ниже приведенной схеме.
Схема приставки для проверки стабилитронов, выполнена на базе типовой схемы стабилизатора тока, с использованием микросхемы прецизионного термостабильного источника опорного напряжения TL431.
Микросхема поддерживает на резисторах (R2 + R3) фиксированное напряжение 2,5 В, поэтому ток через этот суммарный резистор всегда будет постоянным и определяться соотношением 2,5 / (R2 + R3). Ток через исследуемый стабилитрон VD, при изменении входного напряжения, также будет постоянным, но уменьшенным на величину тока базы. Чем выше будет коэффициент передачи тока транзистора, тем более эти токи будут приближены по величине.
В схеме использован транзистор ВС637 c рабочим током КЭ до 500мА и допустимым напряжением до 60В. Возможна его замена на другой NPN транзистор с близкими характеристиками.
Минимальный рабочий ток микросхемы VD1 равен 1мА. Резистор R1 рассчитывается для обеспечения этого тока и тока базы.
Резистор R2 определяет максимально допустимый ток через стабилитрон, а переменный резистор R3 позволяет его регулировать в процессе измерений.
Источником напряжения для приставки может быть лабораторный блок питания с регулируемым выходным напряжением от 3 до 30В.
При отсутствии БП можно использовать маломощный выпрямитель с выходным напряжением до 30В.
При желании, можно изготовить автономную приставку, для чего достаточно дополнить схему регулируемым блоком преобразования напряжения (покупным или изготовленным самостоятельно) используемой батареи до входного напряжения приставки. Интернет богат предложениями.
Кроме проверки стабилитронов, на приставке можно проверить диоды или светодиоды. Подключив к приставке, можно определить рабочее напряжение светодиода, подобрать экземпляр с минимальным напряжением или максимальной яркостью.
Всем известно, что яркость светодиода зависит от протекающего через него тока. Но ток светодиода очень зависит от питающего напряжения, что особенно заметно в изменениях яркости при нестабильности питания. Поэтому, небольшое повышение питающего напряжения часто приводит к такому увеличению тока через светодиоды, что они перегорают. Для предотвращения этого, светодиоды подключают через драйверы, которые являются стабилизаторами тока. Рассматриваемая приставка для проверки стабилитронов, как раз и выполнена на базе схемы стабилизатора тока, поэтому дополнительно может полноценно исполнять роль драйвера для светодиодов.
1. Монтаж схемы
Схему приставки предварительно соберем на универсальной монтажной плате из подобранных согласно схеме деталей.
Подключаем схему к регулируемому блоку питания (в данном примере использован БП с выходным напряжением 1…25В).
К контрольным точкам для подключения стабилитрона присоединяем мультиметр в режиме миллиамперметра.
Используя переменный резистор R3, проверяем диапазон регулировки тока приставки на разных режимах, изменяя входное напряжение от минимума до максимального значения.
При необходимости корректируем номиналы резисторов.
2. Изготовление корпуса приставки
В качестве корпуса можно подобрать небольшую пластмассовую коробочку. В данном примере использован отработанный корпус кнопки включения сигнализации. Его размеры 75 х 55 х 30 мм, но объема достаточно для размещения всего комплекта автономного устройства.
Освобождаем корпус от ненужных деталей и по его размерам, размечаем и отрезаем из фольгированного текстолита контактную пластину для подключения контролируемых деталей.
Для регулировки тока стабилизации на переменный резистор установим рукоятку. Под нее можно установить шкалу и разметить ее при тарировании приставки. Но необходимо учесть, что шкала тока нелинейная и при максимальных токах деления шкалы расположены плотно, да и размеры корпуса минимальны.
При желании расширить шкалу в диапазоне максимальных токов, для большей точности установки, можно дополнить приставку дополнительным переменным резистором на 47Ом, включенным последовательно с R3.
В приведенной приставке, для определения установленного тока, под рукояткой регулировки приклеено кольцо от барабана механического счетчика. При тарировании приставки, для каждой цифры (и положения между цифрами) показания тока записывались в таблицу для дальнейшего использования. Риской для отсчета служит канавка раздела в контактной пластине.
4. Проверка стабилитрона (порядок измерения)
К испытательным контактам для подключения проверяемого стабилитрона присоединяем мультиметр в режиме миллиамперметра. На тарированной приставке переходим далее.
С помощью переменного резистора R3 устанавливаем ток стабилизации для проверяемого стабилитрона (например, 5мА).
Переключаем мультиметр в режим вольтметра и устанавливаем на БП минимальное напряжение.
Подключаем проверяемый стабилитрон и начинаем плавно повышать напряжение на входе приставки. Когда показания прибора перестанут изменяться, вольтметр покажет напряжения стабилизации для данного стабилитрона.
5. Проверка стабилитрона (проверка работы)
Протестируем стабилитрон Д814А (по справочнику — номинальный рабочий ток стабилизации 5 мА, возможный диапазон — 3…40мА, напряжение стабилизации – 7,0…8,5В).
Установим ток стабилизации для проверяемого стабилитрона 5мА.
Тот же стабилитрон, но подключен как диод в прямом направлении. На экране прибора отражается падение напряжения на p-n переходе (примерно 0,6…0,7В).
Если ток не протекает через стабилитрон в обоих направлениях, то его напряжение стабилизации превышает максимальное входное напряжение приставки.
Возможно это диод, включенный в обратном направлении. Тогда перевернуть его и проверить вновь на падение напряжения в p-n переходе.
Если напряжение будет близким к нулю, то стабилитрон пробит.
Определим напряжение стабилизации на паре других стабилитронов, не имеющих маркировки.
Источник
Копии схем и печатных плат устройств попавшие ко мне
Идентификатор стабилитронов – приставка к мультиметру.
Запись опубликована Yanshun · 2 января 2020
4 427 просмотров
Добрый день.
При создании схем, на плате очень часто встречаются MELF диоды и определить где диод или стабилитрон мультиметром не возможно, маркировки ведь на них нет, кроме цветного кольца.
В начале обходился простейшим способ определения, БП на 24В, Мультимет и пробник. Все было замечательно, но потом начали попадаться стабилитроны на более высокое напряжение, до 100В, чтобы их проверить моего БП (24В) не хватало.
Начал шустрить сеть в поисках подходящего варианта и нашел одну замечательную статью. Все параметры данной схемы меня устраивали, одно из ключевых было, чтобы напряжение на выходе было не более 100В. По сути, это обычны повышающий DC-DC преобразователь, с полностью гальванической развязкой.
С начало взял трансформатор от зарядного устройства, собрал все навесным монтажом. Устройство запустилось, но как я не старался, выше 36В не смог поднять напряжение. Начал искать подходящий трансформатор, который легко разобрать и мотать, так как кольцо я не хотел мотать. Взял Ш-Образны трансформатор, из не давно разобранного БП, прокипятил его 5 мин., чтобы клей разогрелся и его было возможно разобрать (брать нужно прям из кипятка в перчатках, тогда он легко разъединяет половинки ). Смотал все обмотки и начал мотать нужные мне, часть провода, использовал с только что смотанного с трансформатора. Каждая обмотка имеет свою изоляцию, мотал все обмотки по часовой стелки, мне так проще запоминать Начало и Конец обмоток. Высоковольтную обмотку мотал с помощью дрели, выставил минимум обороты и в навал, на глаз, мотал 200* витков (считал прям во время намотки ), каждые 50 витков изоляция.
Да, с трансформатором пришлось повозиться, но больше времени заняло размещение все в корпусе. Подкинул трансформатор и на выходе получил 115В, для меня это много, но благо есть подстроечник и можно регулировать. Начал его крутить, но напряжение смог снизить только до 104В, все равно много, я пробовал всего два транзистора КТ817 и TIP31, первое что попало под руку. Потом все таки удалось снизить выходное напряжение до 97В, просто заменив пленочный конденсатор на керамический, на схеме указал. Почему именно 100В, для меня это важно потому, что на схеме могут быть 1N4148, а они не очень любят напряжение более 100В.
С одной проблемой разобрался.
Важная информация.
Тут меня посетила *отличная* идея, почему бы не использовать цифровой китайский вольтметр сразу будет видно напряжение. Обрадовавшись, начал все варганить и паять, но вольтметр не захотел запускать напрямую от питания 18650, мало ему видимо напряжения. Значит поставим повышающий DC-DC преобразователь, для питания вольтметра. Все собрал, выкрутил на DC-DC 9V и вольтметр запустился, отлично. И тут начинается самое интересное, при включенном полностью устройстве, соединяю минусы входа и выхода трансформатора, а иначе вольтметр не сможет измерить напряжение на выходе. Схема работает, но как только я подключаю желтый провод вольтметра, измерительный, в точку измерения, напряжение сразу проседает на 60% процентов, если откинуть желтый провод вольтметра, напряжение стабилизируется на выходе. Так-же если откинуть желтый провод и оставить подключенные провода, общий, входа и выхода, то устройство не запускается с первого раза, может с третьего или с пятого. Видимо два DC начинаю друг другу *бить морду*.
Установка конденсаторов не решала проблему.
Так-же пытался намотать на выходе еще одну обмотку, для питания вольтметра, при таком варианте напряжение на выходе (измерения при подключении измерительно провода вольтметра) проседала всего на 30%, что мне не подходило.
Поэтому я все эти модули убрал из схемы и оставил, как в оригинале, мультиметр.
Это чтобы не было повторений моих ошибок.
Вторая проблема была все это разместить в корпусе. Нашел корпус об БП, размером 75*50*30 (Д*Ш*В). Все втиснулось с простором, все крепил на болтики М2, нарезал резьбы прям в пластике корпуса, толщина его 3 мм, сверлил сверлом 1,5 мм и прям болтиком нарезал резьбу, нет у меня такого метчика. Все держится мертво, крутить болтики я не буду они там до конца жизни устройства остались.
Теперь осталось сделать крокодилы, для быстрого подключения стабилитронов и пинцет для MELF стабов.
Ну а теперь характеристики приставки:
1. Автономное питание от 18650.
2. Модуль зарядки для 18650.
3. Низкое потребление на холостую 11 мА (зависит от применяемого транзистора).
4. Потребление во время измерения до 80 мА (зависит от подключаемого стабилитрона).
5. Очень быстрое восстановление режима работы, доли секунды.
6. Высокая надежность схемы.
7. Модульность.
8. Возможность измерения стабилитронов на потоке.
9. Полная гальваническая развязка, это на то случай если питать от БП.
10. Доступность компонентов и легкость настройки и сборки устройства.
Фото собранного устройства, все собиралась навесным монтажом. Платка использовалась только для подключения разъема, там все-же есть нагрузка механическая.
Схема устройства в *jpg 300 dpi, исходник в Spl7, PDF 720 dpi.
Удачной сборки.
Источник