Прибор для проверки импульсных трансформаторов своими руками

Тестер имп.трансформаторов

Сделал тестер для импульсных трансформаторов. Данный прибор используется для определения к-з витков в высокочастотных трансформаторах, дросселях и т.п.
Что в итоге получилось:

Насколько знаю, такой тестер есть в наборе от мастер кита.

Немного о принципе действия.

Через тестируемую индуктивность заряжается конденсатор с3 импульсом малой длительности до напряжения около 0.7в. Далее этот конденсатор через полевик замыкается на общий провод. Образуется LC контур в котором возникают затухающие колебания на резонансной частоте.

Чем больше потери энергии в контуре тем быстрее падает амплитуда колебаний. Это определяет т.н. добротность контура, что это такое читайте в книжках по электротехнике. Так вот, в случае если катушка имеет к-з виток, колебания будут почти сразу затухать. Остальная часть схемы считает количество колебаний до того момента пока их амплитуда не упадет ниже определенного уровня.

Конструкция.

Для корпуса взята пластиковая коробочка размерами 45x60x28. В одной половине строительным акриловым клеем вклеена плата с кнопкой. В другой находятся батарейки.


Т.к. обычные боксы на 4ААА в крышку не влазили пришлось колхозить.


Контакты для батареек сделаны из полосок текстолита. Минусовые контакты-пружинки сделаны из металлической полосы от pls контактов, и припаяны. Вся конструкция вклеена в крышку на двухсторонний вспененный скотч.

Ну и собственно тесты.

Импульсный трансформатор от БП телевизора в нормальном состоянии:

Имитируем к-з виток:

Синфазный дроссель из входного фильтра:

Дроссель ДПМ на 100мкГн:

С сетевыми 50Гц трансформаторами тестер не работает. Видимо из-за замкнутого железного сердечника.

Оригинал статьи из журнала «Ремонт электронной техники», 2001-05 приложен в pdf. Схема взята без изменений. Немного изменил номиналы в задающем генераторе, т.к не было резисторов на 2.2М. Также вместо полевика bss170 поставил 2n7002, и вместо mc14015 — К561ИР2.

Схема с измененными номиналами прилагается отдельной картинкой в архиве. Плата разведена в sprint layout 5, также находится в архиве.

Источник

Прибор для проверки импульсных трансформаторов своими руками

При частой сборке импульсных источников питания, приходится мотать для них много трансформаторов, и как следствие, возникает необходимость в их проверке.

Предлагаемый стенд позволяет безопасно проверить работоспособност и определить характеристики практически любых импульсных трансформаторов для мостовых и полумостовых сетевых импульсных источников питания.

Испытательный стенд был изготовлен на скорую руку. Он представляет из себя импульсный блок питания, силовым трансформатором которого является испытуемы трансформатор.

Частоту задающего генератора можно регулировать в диапазоне от 13 до 205кгц, скважности импульсовот 0 до 50%.

Испытательный стенд имеет повышенную безопасность и регулируемую систему защиты от коротких замыканий на выходе испытуемого трансформатора. На входе питания имеется патрон для установки стандартных ламп накаливания с цоколем е27, для ограничения входного тока источника питания, это дополнительная защита на случай апокалипсиса или если вдруг не сработает основная защита.

Для силовых испытаний лампу можно исключить из схемы ввинчивая в патрон короткозамкнутый цоколь от лампы.

Низковольтная схема управления, для гальванической развязки, запитана от отдельного маломощного источник.

Основание стенда выполнено из толстого стеклотекстолита. Оно обеспечивает надежную изоляцию. Все провода имеют высоковольтную термостойкую силиконовую изоляцию.

Стенд состоит из 4-х основных блоков:

  • Сетевой фильтр с выпрямителем и емкостями полумоста;
  • Силовой части с транзисторами и узлом защиты;
  • Схемы управления;
  • Отдельный блок питания 12В 2А, для питания управляющей части.
Читайте также:  Приспособа для заточки ножей ледобура своими руками

Схема управления состоит из ШИМ контроллер SG3525 и согласующего трансформатора, который управляет силовыми транзисторами и обеспечивает полную гальваническую развязку от высоковольтной части.

Трансформатор гальванической развязки намотан на ферритовом кольце, которое взял с нерабочего компьютерного блока питания.

На таких кольцах намотан дроссель по входу. Желто белые и прочие кольца, которые стоят по выходу в качестве дросселя групповой стабилизации не подойдут, они изготовлены из порошкового железа, а в схеме нужен именно феррит с магнитной проницаемостью от 1500 до 3000.

Трансформатор состоит из трех обмоток, первичная и две вторичные. Все обмотки мотаются разом. Провод для намотки для всех обмоток одинаковый, диаметром от 0,3 до 0,5мм. Первичная обмотка 20 витков, вторичные по 15. Важно при подключении соблюдать начала всех обмоток, они указаны точками как на схеме так и на плате, если перепутать местами начало с коном обмоток, схема работать не будет.

Проверить собранную плату управления можно с помощью осциллографа, либо подключив на выход к управляющим обмотками небольшие 12В лампы накаливания с малой мощностью, лампы должны светиться.

Плата управления и схема в целом снабжена плавным пуком, задержка определяется емкостью конденсатора С8. Резистор К4 задает мертвое время.

Сетевой фильтр, выпрямитель и емкости полумоста расположены на отдельной плате.

На третьей плате расположены силовые транзисторы с системой защиты от коротких замыканий. Силовые транзисторы установлены на общий радиатор через теплопроводящие прокладки.

В качестве силовых транзисторов применены 8-и амперные N-канальные полевые транзисторы с напряжением сток-исток 900 вольт.

Высоковольтные ключи нужны из-за отсутствия в схеме снабберных цепей гасящих напряжение самоиндукции первичной обмотки трансформатора. Снабберные цепи рассчитываются под конкретный трансформатор и на конкретную частоту ШИМ контроллера. В стенде это в принципе невозможно, так как частота ШИМ регулируется в широких пределах, а силовой трансформатор — испытуемый элемент с неизвестными характеристиками.

Защита реализована на базе токового трансформатора и работает следующим образом. Напряжение со вторичной обмотки трансформатора выпрямляется, и поступает на нагрузочный резистор. При замыкании выхода испытуемого трансформатора на первичной обмотке токового трансформатора образуется падение напряжения, повышенное напряжение со вторичной обмотки выпрямляется и поступает на вход ШИМ контроллера. Если это напряжение превышает порог 2,5В, микросхема блокируется, т.к. это напряжение подается непосредственно на вход защиты микросхемы, далее закрываются ключи внутреннего драйвера и как следствие отключаются силовые транзисторы. Регулировать ток срабатывания защиты можно с помощью делителя напряжения в виде подстроечного многооборотного резистора R9.

Трансформатор имеет две обмотки. Первичная имеет один виток толстого провода, который соединяется последовательно с первичной обмоткой испытуемого трансформатора, и вторичная обмотка — 100-120 витков с отводом от середины.

Трансформатор тока намотан на таком же ферритовом колечке, как и согласующий трансформатор. Сначала мотается вторичная обмотка, которая состоит из двух равноценных плеч по 60 витков. Обмотки нужно сфазировать, соединив начало одной, с концом другой. На схеме начало указано точкой. Провод для этой обмотки необходимо взять с диаметром от 0,15 до 0,25 мм, больше — нет смысла. Обе обмотки, мотаются разом для минимизации разброса характеристик. Витки необходимо равномерно распределить по всему кольцу, желательно без перехлестов. После намотки обмотку необходимо хорошо изолировать, можно залить эпоксидной смолой.

Первичная обмотка — это один не полный виток, диаметр провода 1,25мм.

С помощью такого стенда можно найти оптимальную и предельную рабочую частоту сердечника, опытным путем подобрать снабберную цепочку и эффективность его работы.

Читайте также:  Платья феи для девочек своими руками

При необходимости лампу накаливания по входу можно исключить и нагрузить трансформатор по полной, для тепловых замеров и оценки габаритной мощности сердечников. Также можно изучить влияние скин эффекта на разных частотах. Стенд также дает возможность настраивать колебательный контур индукционных нагревательных систем и многое другое.

Источник

ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Тестер трансформаторов — это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел — если будет замыкание в витках — покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале «Ремонт электронной техники»:

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов — это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа — появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Читайте также:  Крышка для пластиковой емкости своими руками

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15. R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1. HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два — желтые (ситуация неопределенная) и последние три — зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей — необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

Аналог микросхемы 4015 — К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали — нет. Транзистор поставил 2N5401, а на месте полевого — 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков, сборка nickolay78.

Источник

Оцените статью
Своими руками