Преобразователь контроллер своими руками

Частотник своими руками — любительская схема преобразователя

Зачем нужно делать самому преобразователь для 3-фазного электромотора, и как смастерить его своими руками? Чтобы защитить окружающую природу повсюду создаются правила, которые рекомендуют изготовителям электрических устройств делать продукцию, которая будет экономить электрическую энергию. Часто это бывает достигнуто правильным управлением частотой вращения электромотора. Преобразователь частоты легко решает эту задачу.

Частотник электромотора с тремя фазами по-разному называют: инвертор, частотный изменитель тока, приводной механизм, регулируемый частотой. Сегодня такие устройства делают разные заводы, но многие умельцы своими руками изготавливают не хуже.

Как я сам изготовил частотный преобразователь

Я изготовил преобразователь частоты и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:

Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A. У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки. Для управления установил две кнопки и выключатель для обратного вращения.

Силовую часть я собрал на навесном монтаже.

Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:

Вид этой моей платы с другой стороны:

Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:

Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:

Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.

При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски. Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала. Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.

Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.

Как сделать инвертор самому своими руками?

Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.

Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.

За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением). Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.

Читайте также:  Коптильный шкаф холодного копчения своими руками чертежи

Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой. Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью. Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера. Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела векторные частотники, преобразившие промышленность до неузнаваемости.

Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.

Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.

Для чего предназначен инвертор — его принцип действия

Инвертор действует на частоту вращения асинхронных моторов. Моторы переделывают электроэнергию в механическое движение. Вращательное движение преобразуется в движения механические. Это создает большое удобство. Асинхронные моторы очень популярны во многих сторонах жизни людей.

Обороты электродвигателя можно изменять и другими устройствами. Но, у них много недостатков. Они сложны в пользовании, дорого стоят, работают с плохим качеством, разбег регулировки маленький.

Частотный преобразователь для мотора с тремя фазами легко решает эту проблему. Все знают, что пользование частотниками для изменения частоты вращения есть самый хороший и правильный метод. Такой аппарат дает мягкий пуск и торможение, а также контролирует многие процессы, происходящие в моторе. Аварийные ситуации при этом сводятся на нет.

Чтобы плавно и быстро регулировать работу двигателя, специалисты разработали специальную электрическую схему. Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Коэффициент полезного действия его достигает 98%. Это происходит за счет повышения частоты коммутации. Механические устройства не могут выполнить такие функции.

Как регулировать скорость инвертором?

Как частотник может изменять частоту вращения трехфазного электромотора? Сначала он меняет напряжение сетевое. Далее, из него получается нужная амплитуда и частота напряжения, поступает на электромотор.

Разбег интервала регулирования скорости преобразователем большой. Можно изменять вращение мотора в другую сторону. Чтобы двигатель не вышел из строя, нужно брать во внимание данные из его характеристики, допускаемые обороты, мощность.

Из чего состоит привод регулирования?

Он имеет в составе три звена:

  1. выпрямитель, дающий потенциал постоянного тока при включении к питанию электрической сети. Сеть может быть управляемой или нет;
  2. фильтрующий элемент, который сглаживает выходное напряжение (применяется емкость);
  3. инвертор, который производит нужную частоту потенциала, крайнего звена возле электромотора.

Режим управления частотников

Их делят на виды управления оборотами двигателя:

  1. скалярное управление (нет связи с обратной стороны);
  2. режим векторного управления (связь с обратной стороны имеется, или отсутствует).

В первом случае управляется статор с его магнитным полем. Управление вектором учитывает действие полей магнита ротора и статора, улучшается крутящий момент при разных скоростях вращения. Это и есть основное различие их режимов управления.

Способ векторов точнее и эффективнее. Обслуживать его дороже. Он больше подходит для специалистов с хорошими профессиональными умениями и знаниями. Метод управления скалярного типа наиболее прост в работе. Применяется он с выходными параметрами, не требующими регулировки особой точности.

Как подключить инвертор треугольником и звездой?

Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.

Читайте также:  Открытки 23 февраля кружка своими руками

Подключить частотник к мотору можно звездой или треугольником.

Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.

Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.

Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.

При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.

Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.

Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.

Применение инверторов нового поколения

Современные частотные преобразователи делаются с применением таких устройств как микроконтроллеры. Это значительно повышает функции инверторов в алгоритмах управления и контролирования с точки зрения безопасности работ.

Частотники имеют успешное применение в областях производства:

  • в водоснабжении, снабжении теплом при изменении скорости подачи помпы холодного и горячего водоснабжения;
  • в заводских условиях машиностроения;
  • в легкой и текстильной промышленности;
  • в энергетике и производстве топлива;
  • для насосов канализации и скважин;
  • в технологических процессах для автоматики управления.

Чтобы управлять и контролировать частотники изготовитель прибора предлагает созданную программу, которая будет всегда иметь связь с контроллером посредством порта, будет показывать на мониторе состояние и позволит производить управление. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.

Данные обмениваются в три этапа:

  1. Идентификация.
  2. Инициализация.
  3. Управление и контроль.

Стоимость блоков питания бесперебойного напряжения имеет зависимость от того, есть ли в нем частотный преобразователь. За такими устройствами будущее. Отрасли экономики и энергетики будут быстрее развиваться благодаря новым современным устройствам.

Источник

Повышающий преобразователь с MPPT контролером заряда для солнечных батарей

Устройство представляет собой простой повышающий преобразователь и ограничитель напряжения, который заряжает аккумуляторы напряжением 12В от солнечной панели напряжением 6В. Устройство также имеет функцию MPPT (Отслеживание точки максимальной мощности). Когда мы думаем о MPPT, то обычно вспоминаем про микроконтроллеры и сложные вычислительные алгоритмы мощности. Однако такие алгоритмы на самом деле не нужны.

В статье представлены два схематических решения. Первая схема просто иллюстрирует повышающий импульсный преобразователь, в то время как вторая демонстрирует самодельную рабочую схему устройства. Она рекомендуется для более продвинутых экспериментаторов, которые имеют в своем распоряжении осциллограф. Схема может также представлять интерес для студентов и тех, кто просто хочет расширить свои знания в электронике.

Схемы топологии повышающего преобразователя и схема самодельного солнечного преобразователя

Теоретические сведения о повышающем преобразователе

На схеме топологии повышающего преобразователя катушка L1 заряжается, когда транзистор Q1 открыт. Когда транзистор Q1 закрыт, катушка L1 разряжается на батарею через стабилитрон D1. Выполнение данной операции в течение нескольких тысяч раз в секунду в результате приведет к существенному выходному току. Этот процесс также называется индуктивным разрядом. Для его функционирования необходимо, чтобы входное напряжение было ниже выходного. Также при наличии солнечной панели необходимо использовать элемент хранения энергии – конденсатор (C1), который позволит солнечной панели непрерывно выдавать на выход ток между циклами.

Описание принципиальной схемы повышающего преобразователя

Схема состоит из трех основных блоков, включая генератор стробирующих импульсов на базе 555 МОП-интегральной схемы, 555 ШИМ модулятор и операционный усилитель с ограничителем напряжения. 555 серия с каскадным выходом может обеспечить ток около 200мА и позволяет создать отличный маломощный генератор импульсов. 555 ШИМ модулятор является классической генераторной схемой на базе 555 серии. Для регулировки времени разряда конденсатора C3 (время заряда катушки), на вывод 5 подается напряжение величиной 5В.

Читайте также:  Космическая станция своими руками поделка

Ограничение напряжения

Операционный усилитель U1A вычисляет сигнал напряжения батареи, когда разделенное установленное значение напряжения сравнивается с эталонным напряжением величиной 5В. Когда напряжение превышает установленное значение, выход переключается в отрицательном направлении, снижая, таким образом, частоту импульсов ШИМ генератора и ограничивая любой последующий заряд. Это эффективно предотвращает перезаряд.

Питание схемы от солнечной панели

Для предотвращения ненужного разряда батареи, когда солнце не светит, все цепи запитываются через солнечную панель, за исключением делителя напряжения с обратной связью, который потребляет около 280мкА.

MOSFET логического уровня

Поскольку схема должна работать при низких уровнях напряжения (данная схема работает от входного напряжения не ниже 4В), необходимо установить MOSFET логического уровня. Он будет открываться при напряжении 4.5В. Для этой цели я использовал мощный МОП-транзистор MTP3055.

Фиксация напряжения с помощью стабилитрона D2

В этой схеме НЕЛЬЗЯ ОТСОЕДИНЯТЬ батарею, в противном случае MOSFET-транзистор сгорит. Поэтому для его защиты я установил стабилитрон D2 напряжением 24В. Без этого стабилитрона у меня самого сгорело много МОП-транзисторов.

функцияMPPT

Когда напряжение / ток солнечной панели увеличивается, ШИМ генератор повышает частоту импульсов, что в свою очередь приводит к увеличению выходного тока. В то же время, дополнительное напряжение прилагается к катушке, увеличивая, таким образом, ее зарядный ток. В результате повышающий преобразователь действительно «прилагает большие усилия» при повышении напряжения или «ослабевает», когда напряжение снижается. Для максимальной передачи энергии при ярком солнечном свете выполняется регулировка потенциометра R8 так, чтобы зарядный ток батареи был максимальным – это и будет точка максимальной мощности. Если схема работает правильно, то будет наблюдаться очень плоский пик при вращении R2. Диод D3 выполняет автоматическую MPPT регулировку более точно посредством вычитания фиксированного напряжения из разницы напряжения между батареей и средним напряжением через конденсатор C3. В условиях низкого освещения вы обнаружите, что резистор R3 не является оптимальным, однако он не будет полностью исключен из цепочки. Заметьте, что интеллектуальные MPPT контроллеры также могут лучше работать при полном диапазоне, однако это улучшение крайне малоэффективно.

Номиналы компонентов

Схема настроена на напряжение 9В, солнечная панель на мощность 3Вт. Повышающие преобразователи весьма привередливы и не будут работать в широком диапазоне условий – если ваша система использует другие пределы номинальной мощности для солнечной панели, тогда ждите проблемы. Единственные компоненты, которые требуют настройки, катушка L1 и конденсатор C3. Я был удивлен, что частота повторений оказалась очень низкой (около 2кГц). Я начал с катушки индуктивностью 100мкГ, однако схема работает лучше при индуктивности 390мкГ – первоначально я хотел получить около 20кГц. Для наилучшей работы выполняйте заряд катушки от 5 до 10 раз по отношению к току солнечной панели, затем обеспечьте продолжительный период времени (3X), чтобы катушка могла полностью разрядиться. Это обеспечит приемлемую работу, когда напряжение источника питания будет близко к напряжению батареи. Заметьте, что низкоомные катушки обеспечивают наилучшую эффективность. Наибольшая потеря действительно происходит в диоде Шотки, и наименьшая потеря это то, для чего эти диоды предназначены.

Работа при высокой частоте обычно предпочтительна. Это позволит минимизировать размер катушки. Однако для эксперимента, используйте катушку, которая будет работать лучше всего.

Предлагаемые компоненты указаны на схеме. Естественно, зарядное устройство можно приспособить в соответствии со своими требованиями.

Источник

Оцените статью
Своими руками