Ионофон своими руками
Рассматриваемое устройство представляет собой ионофон, поющую дугу. По сути, это блокинг — генератор с аудиомодуляцией. Конечное звучание ионофона зависит от многих факторов, но при правильной настройке/подборке элементов, оно достаточно хорошее. При питании 12 В устройство потребляет 70 Вт.
Внимание! Трогать руками ВВ выводы вторичной обмотки нельзя! Вы рискуете получить ожог и/или удар электрическим током!
Главный элемент схемы — биполярный транзистор КТ825Г. При работе он очень сильно греется, так что требуется хороший теплоотвод, в моём случае (лучшего решения я не нашёл) транзистор установлен на компьютерный радиатор с кулером.
Принципиальная схема ионофона:
О деталях устройства
R1 — 2 Вт, R2 — представляет собой два резистора 470 Ом 0.25 Вт соединённых параллельно (можно заменить одним 240 Ом на 1 Вт), R3 — 1 Вт. Tr1 — телевизионный строчный трансформатор ТВС-110ПЦ15, первые две обмотки мотаются вручную на свободной стороне сердечника — первая 5 витков проводом диаметром 1 мм (2 мм с изоляцией) и вторая обмотка 3 витка таким же проводом, вторичная обмотка используется родная — 14-й вывод снизу и 15-й вывод (сверху) на самой обмотке. Tr2 — трансформатор (фото представлено ниже) с железным сердечником с сечением магнитопровода 0.54 см^2 (работает и с более бОльшим сечением). VT1 можно заменить на: КТ818, BD242. С изменением полярности питания на: КТ827, КТ819, BD243. При замене на более маломощные транзисторы звук будет тише.
Настройка работоспособности ионофона
Вся настройка работоспособности устройства заключена в правильной фазировке обмоток строчного трансформатора, на схеме ориентация обмоток указана относительно верхнего (15-го) вывода вторичной обмотки.
Наладка звука
Звук зависит главным образом от Tr2, а точнее от его коэффицента трансформации, а он в свою очередь зависит от выбранного источника звука — в моём случае: источником звука является транзисторный УНЧ мощностью 2 Вт (2 Вт для 4-х Омной нагрузки), первичная обмотка (на которую подаётся аудиосигнал) содержит 75 витков проводом 0.5 мм в диаметре, а вторичная 15 витков проводом диаметром 1 мм. Коэффицент трансформации, в моём случае, равен 5. Вторичная обмотка этого трансформатора подбирается/мотается так, чтобы её сопротивлением постоянному току можно было пренебречь. Первичная обмотка мотается исходя из желаемого результата — чем коэф. трансформации ближе к 1, тем звук с дуги будет громче, но будет больше искажений, а чем ближе к 5 (или больше), тем звук будет тише, но искажений будет меньше. Также качество звука зависит от остроты ВВ электродов вторичной обмотки строчного трансформатора.
Печатная плата
На печатной плате присутствует 2 элемента не обозначенных на схеме: два контакта с 12 В для кулера, и резистор 2.2 кОм со светодиодом для индикации питания. Подключение VT1 и Tr1 к печатной плате осуществляется через компьютерные коннекторы, а подключение питания и Tr2 через клеммы с фиксацией.
Фото печатной платы:
Итог
При данных номиналах деталей дуга тянется до 2 см, звук чёткий и достаточно громкий. Если не подавать аудиосигнал на Tr2, то устройство будет представлять из себя простой повышающий преобразователь напряжения.
Фото устройства в работе:
Источник
Ионофон или поющая дуга из строчника
Всем привет! В этой статье я расскажу как сделать «Поющую дугу» или «Ионофон», самый любимый и популярный музыкальный гаджет начинающих радиолюбителей. В 1959 на шестнадцатой всесоюзной выставке творчества радиолюбителей в Москве группа Ленинградских радиолюбителей Б. Каратеев, В. Прютс и Е. Плоткин впервые показали миру невиданный в те времена звуковоспроизводящий агрегат с ионофоном, в некоторых научных источниках его называют плазменным громкоговорителем. Этот гаджет демонстрировали в действии, проигрывая на нем различные мелодии. Качество звучания было превосходное за счет расширения частотного диапазона, в отличии от электродинамических громкоговорителей, этот прибор не имел механических искажений, звук воспроизводился из электрической дуги возникающей между двумя электродами. Источником электрической дуги служил блокинг генератор с повышающим напряжение трансформатором.
Список радиодеталей для сборки Ионофона или Поющей дуги:
- Трансформатор строчной развертки ТВС-110ПЦ15 или ТВС-90ЛЦ5 и другие аналогичные от советских ламповых и транзисторных телевизоров
- Микросхема интегрального таймера NE555 или советский аналог КР1006ВИ1
- Резисторы R1 50R, R2 1K, P1 10K
- Конденсаторы С110n, С2 100n, C3 330n
- Транзисторы IRFZ44, IRF470, IRF3808 и другие аналогичные чем мощнее тем лучше
- Радиатор от компьютера чем больше тем лучше, транзистор будет очень сильно греться
На этом рисунке представлена простая схема ионофона из строчного трансформатора.
Схема Ионофона или поющей дуги из строчника на таймере NE555
Схема состоит из генератора прямоугольных импульсов построенного на интегральном таймере NE555 c возможностью аудио модуляций. Важным элементом генератора высокого напряжения является строчный трансформатор ТВС-110ПЦ15.
На магнитопроводе трансформатора надо намотать новую первичную обмотку состоящую из двенадцати витков медного провода диаметром один миллиметр. Параллельно первичной обмотке подключается конденсатор, который увеличивает длину электрической дуги в два раза.
Все детали ионофона легко помещаются на маленькой печатной плате размером 4 на 2,5 сантиметра.
Полевой транзистор разместите на радиаторе от компьютера. На плате имеется подстроечный резистор предназначенный для регулировки частоты генератора в пределах 12-48 КГц. Звуковой сигнал от плеера или мобильного телефона подается на пятый вывод таймера NE555 через разделительный конденсатор. Что позволяет управлять длительностью выходных импульсов. Третий вывод микросхемы нагружен мощным полевым транзистором, раскачивающим высоковольтный трансформатор.
Напряжение питания генератора 12 вольт. В качестве источника питания подойдет компьютерный блок или любой другой с силой тока не менее 2 А. Не смотря на свою простоту ионофон нуждается в небольшой настройке частоты генератора, для этого при первом включении надо выставить на переменном резисторе Р1 сопротивление 3,2 кОм.
Потом зажечь дугу и вращая переменный резистор Р1 добиться максимальной длины дуги. На этом настройка поющей дуги окончена. После подключения плеера к генератору наслаждаемся кристально чистым звуком исходящим от горящей плазменной дуги.
Потом я решил придать ионофону более нормальный вид. Трансформатор и печатную плату с радиатором разместил на кусочке МДФ. Для плазмы из медной проволоки изготовил разрядник. Получился вот такой ионофон.
Немного наигравшись, мне стало интересно на какой частоте работает мой генератор высокого напряжения и я решил измерить частоту подключив осциллограф. Оказывается рабочая частота генератора 20 кГц.
Это устройство можно использовать как зажигалку. Дуга на столько горячая, что легко зажигает бумагу и до красна накаляет металлические предметы.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать ионофон или поющую дугу из строчника.
Источник
Ионофон или поющая дуга из строчного трансформатора
Приветствую, радиолюбители-самоделкины, а также все любители красивых высоковольтных разрядов!
Неотъемлемой частью любого кинескопного телевизора или монитора является высоковольтный трансформатор, служащий в схеме телевизора для создания высокого анодного напряжения для кинескопа. Строчные трансформаторы бывают двух видов — ТДКС и ТВС. Первые расшифровываются как трансформаторы диодно-конденсаторные строчные, они имеют в своём составе встроенный умножитель, а потому имеют на выходе большее напряжение, чем ТВС. ТВС же, в свою очередь, расшифровывается как трансформатор высоковольтный строчный, конструктивно он представляет собой ферритовый сердечник, на котором расположена высоковольтная обмотка, а также одна или несколько первичных. Напряжение на выходе такого трансформатора переменное, в отличие от ТДКС, который автоматически выпрямляет высокое напряжение на выходе за счёт встроенного умножителя. И те и другие трансформаторы представляют довольно большой интерес для всех любителей пускать высоковольтные дуги. Однако рано или поздно обычное пускание плазменных дуг надоедает, и хочется какого-то разнообразия. Здесь самое время вспомнить про ионофон — устройство, которое модулирует плазменную дугу аудиосигналом. Таким образом, с помощью ионофона можно воспроизводить, например, музыку с помощью. самой плазменной дуги. В некоторых литературных источниках такие устройства называются плазменными громкоговорителями. Конечно, громкость такого «громкоговорителя» будет совсем небольшой, но зато, в отличие от воспроизведения музыки на привычных динамиков, здесь нет никаких искажений, вызванных механическим перемещением диффузора — ионофон вообще не содержит каких-либо подвижных элементов. Одним словом, такое устройство стоит собрать как минимум для того, чтобы убедится, что это действительно работает. Наглядная схема для сборки представлена ниже.
В левой части схемы можно увидеть два разъёма, красный — плюс питания, чёрный — минус питания, напряжение должно составлять 12В. Схема в процессе работы будет потреблять довольно значительный ток, вплоть до 1-2А, а потому нужно выбрать источник питания с запасом по мощности, например, на 30-50Вт. На схеме также можно увидеть единственную микросхему — таймер NE555, которая служит для генерации прямоугольных импульсов заданной частоты. Эти микросхемы продаются в любом магазине радиодеталей и стоят в районе 10-30 рублей. В верхней левой части схемы можно увидеть радиатор, на котором закреплён мощный полевой транзистор — это важный элемент схемы, ведь именно он будет непосредственно управлять работой строчного трансформатора. Здесь можно использовать любые полевые транзисторы с током как минимум 5-7А и напряжением 100В, например, прекрасно подойдут IRF740, IRF630, IRFZ44, IRF3808 и другие аналогичные. Выводы транзистора обозначены как » G, D, S» что означает затвор, сток, исток соответственно. При подключении транзистора важно соблюдать цоколёвку, иначе схема не заработает. Транзистор нарисован на схеме на радиаторе не с проста — в процессе работы он будет довольно значительно разогреваться, а потому его необходимо разместить на радиаторе при первом же включении схемы. Радиатор не должен быть слишком маленьким, иначе он не справится с отводом тепла. В процессе работы допускается нагрев транзистора до 40-50°C, это безопасно. Между 7 и 8 выводами микросхемы можно увидеть подключенный подстроечный резистор, он нужен для настройки ионофона на максимальную эффективность, то есть максимальную длину высоковольтной дуги. Здесь можно применить любой подстроечный резистор или потенциометр сопротивлением 10 кОм, при этом одна из крайних его ножек соединяется со средней. Также на схеме можно увидеть два резистора, на 50 Ом и 1 кОм, от последнего зависит частота работы схемы, а потому важно соблюдать номинал. Резистор 50 Ом может варьироваться в пределах 10-100 Ом. Оранжевые конденсаторы на схеме — любые керамические или плёночные. При этом конденсатор, обозначенный как 103 имеет ёмкость 10 нФ, а 104 — 100 нФ, важно не перепутать. В правой нижней части схемы показан вход для аудиосигнала, то есть музыки. К схеме для воспроизведения можно подключать плеер, компьютер или телефон, при этом громкость будет регулироваться с самого источника звука, в целях упрощения схемы ионофон не содержит собственного регулятора громкости.
Самая интересная часть конструкции — строчный трансформатор. Для этой схемы не подойдут трансформаторы ТДКС, так как их умножитель не позволит воспроизводить звук. Подойдут только ТВС, например ТВС-110ПЦ15 или другие подобные. Отличить по внешнему виду ТДКС и ТВС не составляет труда. Перед установкой ТВС на схему его нужно подготовить — удалить штатные первичные обмотки, их может быть несколько. Должен остаться лишь голый ферритовый сердечник на месте первичной обмотки, а вот высоковольтную вторичную наоборот нужно постараться не повредить. После этой процедуры на место родной первичной обмотки наматываем свою — она должна содержать 10-15 витков медного провода диаметров около 1 мм. Можно использовать как провод в изоляции, так и медный эмалированный провод. Важной намотать катушку аккуратно, чтобы витки не расходились в стороны, а плотно прилегали к сердечнику — это обеспечит максимальную эффективность. При необходимости обмотку можно зафиксировать термоклеем. К двум выводам новой самодельной обмотки подключается плёночный конденсатор на напряжение как минимум 100В, подойдут конденсаторы типа К73-17, ёмкость должна быть равна 330 нФ. Вместе с конденсатором обмотка подключается к схеме. Один вывод — к плюсу питания, второй — к стоку транзистора. Со штатной высоковольтной обмотки трансформатора снимается дуга, для зажигания и поддержания дуги нужно сделать разрядник — два электрода из толстой проволоки, расположенные на расстоянии 5-10 мм друг от друга. В процессе горения дуги эти два электрода будут сильно нагреваться, поэтому они должны быть тщательно очищены от лака или изоляции.
Всю схему можно собрать навесным монтажом, тем более, что на схеме в начале статьи наглядно показаны все соединения. При сборке схемы таким способом желательно соединять все компоненты как можно более компактно, не используя длинные отрезки проводов — это обеспечит стабильный запуск и работы схемы. Но также можно и изготовить плату, например, методом ЛУТ. Файл печатной платы для открытия в программе Sprint-Layout выложен в конце статьи.
Полевой транзистор можно установить на плату, не забыв прикрутить к нему радиатор, либо вывести с платы на проводах, как показано на фото выше. Также к плате подключается питание 12В двумя проводами и сам трансформатор — ещё два провода. Плёночный конденсатор можно расположить непосредственно около трансформатора, на выводах первичной обмотки. При размещении всех элементов конструкции важно следить за тем, чтобы высоковольтная обмотка трансформатора была подальше отнесена от остальных частей схемы — ведь попадание высоковольтной дуги, например, на микросхему непременно приведёт к выходу её из строя.
Несмотря на то, что высоковольтная обмотка ТВС не обладает достаточной мощностью, чтобы причинить вред человеку, пальцы совать в дугу категорически нельзя — это приведёт к моментальному ожогу, ведь температура плазменной дуги примерно равна температуре пламени. Желательно при касании высоковольтных проводов вторичной обмотки пользоваться пассатижами с диэлектрической ручкой. На картинке ниже можно увидеть собранный разрядник — он представляет собой изогнутую буквой «П» медную проволоку с разрывом по середине. Вся конструкция размещается на небольшой деревянной подставке.
Несколько слов о первом включении и настройке. При первом включении нужно контролировать нагрев полевого транзистора — если он нагревается быстро и слишком сильно даже на радиаторе, значит, где-то в схеме есть ошибка. Узнать о работоспособности схемы можно по характерному шелесту высокого напряжения, который будет исходить от трансформатора. При сближении высоковольтных выводов вторичной обмотки загорится дуга, которую можно будет «растянуть» на некоторое расстояние. Подключать источник аудиосигнала желательно только после того, как схема будет налажена. Также при это нужно следить за тем, чтобы выводы вторичной обмотки были подальше отнесены от аудиокабеля, ведь попадание высокого напряжения гарантированно выведет из строя любой телефон, компьютер или плеер. Единственная наладка схемы заключается в подстройке частоты работы — вращением подстроечного резистора нужно добиться максимальной длины дуги, производить эту настройку нужно лишь один раз после сборки схемы.
На картинке выше показаны импульсы, которые генерирует микросхема NE555, в данному случае они имеют частоту около 20 кГц. Если получится так, что частота будет лежать в слышимом диапазоне (меньше 20 кГц), то возможен лёгкий свист, исходящий от трансформатора — это нормально.
Собрав такую конструкцию можно запросто удивить друзей — ведь им будет очень трудно поверить, что звук воспроизводит всего лишь горящая плазменная дуга. Кроме того, данную конструкцию можно использовать как весьма антуражную зажигалку, ведь температуры дуги достаточно, чтобы поджечь бумагу или другие материалы. Удачной сборки!
Источник