Постоянный источник тока своими руками

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Простой источник постоянного тока своими руками

Многие из нас, кто работал с аналоговыми цепями, часто сталкивались с терминами источник напряжения и источник тока в конструкции схемы. В то время как все, что обеспечивает постоянное напряжение, например, простой выход USB 5 В или адаптер 12 В, может рассматриваться как источник напряжения, термин «источник тока» всегда остается загадкой. И многие схемы, особенно те, в которых используются операционные усилители или коммутационные цепи, потребуют от вас использования источника постоянного тока. Так что подразумевается под источником тока? Как это будет работать и зачем это нужно?

В этом уроке мы найдем ответы на эти вопросы, а также соберем и протестируем простую схему источника постоянного тока с использованием транзистора. Схема, используемая в этом руководстве, сможет выдавать постоянный ток 100 мА на вашу нагрузку, но вы можете изменить его с помощью потенциометра в соответствии с вашими проектными требованиями.

Обычно, когда блок питания управляет нагрузкой, возможны два режима работы: один – в режиме постоянного напряжения (CV), а другой – в режиме постоянного тока (CC).

В режиме CV источник питания обеспечивает постоянство выходного напряжения и изменяет выходной ток в соответствии с сопротивлением нагрузки. Лучшим примером будет ваш USB-порт на 5В, где выходное напряжение зафиксировано на уровне 5В, но в зависимости от нагрузки ток будет меняться. Если вы подключите маленький светодиод, он будет потреблять меньше тока, а если вы подключите больший, он будет потреблять больше тока, но напряжение на светодиоде всегда будет 5 В.

В режиме постоянного тока идеальный источник тока обеспечивает постоянный выходной ток и изменяет выходное напряжение в зависимости от сопротивления нагрузки. Примером этого будет зарядное устройство на 12 В в режиме CC, в котором зарядный ток будет зависеть от напряжения. В случае, если ваша батарея составляет 10,5 В, если вы подключите ее к зарядному устройству на 1 А 12 В, ваш выходной ток от зарядного устройства всегда будет 1 А, но выходное напряжение будет изменяться для поддержания этого тока зарядки 1 А. Так что именно здесь требуются цепи постоянного тока, другим примером может быть схема драйвера светодиода постоянного тока, где ток светодиода должен быть постоянным.

В этом проекте мы создадим простой транзисторный генератор постоянного тока, используя только 4 компонента. Это очень недорогая схема, которая может обеспечить источник постоянного тока 100 мА с использованием источника питания 5 В. Он также будет иметь потенциометр для управления токовым выходом в диапазоне от 1 до 100 мА. Это обеспечит постоянный ток, даже если есть изменения в сопротивлении нагрузки. Устройство будет полезно для использования, когда цепь нуждается в стабильном питании без колебаний.

Схема состоит только из двух активных компонентов, TL431 и BC547. TL431 является шунтовым регулятором, который использует опорное напряжение 2,5 В. Он поддерживает ток катода 1-100 мА для операций, связанных с шунтом. Другие компоненты являются пассивными компонентами. Резисторы должны иметь допуск 1% для точного вывода. Принципиальная схема источника постоянного тока с использованием транзистора.

Читайте также:  Планка для вязания рыболовных сетей своими руками

Вышеприведенная схема полностью подключена к линии 5В. Выходная нагрузка должна быть подключена между выходом и заземлением. На приведенной выше схеме BC547 работает в качестве проходного транзистора. Выходной ток цепи зависит от приведенной ниже формулы, которую можно использовать для расчета выходного тока цепи источника постоянного тока:

Iout = Vref/R4 + Ika

Iout = 100 мА или .100 A
Vref = 2,5 В
Ika = 1 мА или .001 A (Примечание: минимальный ток смещения)

Iout = Vref/R4 + Ika
.100 = 2.5/R4 + .001
.100 — .001 = 2.5/R4
R4 = 2.5/.099
R4 = 25 Ом (приблизительно)

Доступное самое низкое значение R4 составляет 22 Ом. Теперь значение потенциометра можно найти по той же формуле. До этого максимальный доступный ток 100 мА был достигнут резистором 22 Ом. На этот раз потенциометр снизит выходной ток до самого низкого уровня. Поскольку минимальный ток катода, требуемый для TL431, составляет 1 мА, следует предположить, что самый низкий ток будет 2 мА. Следовательно, используя ту же формулу:

Iout = Vref/VR1 + Ika
.002 = 2,5/VR1 + .001
.002 — .001 = 2.5/VR1
.001 = 2,5/VR1
VR1 = 2,5 кОм

Таким образом, доступный потенциометр с минимальным значением 2,2 кОм можно использовать для управления током. Последний расчет заключается в определении значения резистора смещения R1 по следующей формуле:

R1 = Vin/(Iout/hFE + Ika)

Iout = 100 мА (.100A)
Vin = 5 В
hFE = 100 (Максимум)
Ika = 1 мА или .001 A
R1 = Vin/(Iout/hFE + Ika)
R1 = 5/(.100/100 + .001)
R1 = 2,5 кОм

Таким образом, доступное наименьшее значение R1 может составлять 2,2 кОм.

Транзистор BC547 действует как проходной транзистор, который управляется резистором смещения R1 и шунтирующим регулятором TL431. База транзистора фактически подключена через делитель тока. Эта схема делителя тока выполнена с использованием резистора смещения и шунтирующего регулятора. TL431 регулирует постоянный ток посредством измерения опорного напряжения. Схема собранная на макете может выглядеть следующим образом.

Для проверки схемы использовались разные нагрузки (разные значения резистора). Был использован мультиметр для измерения выходного тока цепи, и выходной ток всегда был около 100 мА, как показано на следующем изображении.

Источники постоянного тока используются во многих устройствах. В системе светодиодного освещения для операций, связанных с управлением светодиодом, требуется источник постоянного тока. Как и в портативных устройствах, в цепях зарядки аккумуляторов также применяются источники постоянного тока.

Источник

Простой источник питания с регулируемым напряжением

Что делает источник питания?

Вначале необходимо понять назначение источника питания.
• Он должен преобразовывать переменный ток, полученный из сети переменного тока, в постоянный ток.
• Он должен выдавать напряжение по выбору пользователя, в диапазоне от 2 В до 25 В.

Основные преимущества:
• Недорогой.
• Простой и удобный в применении.
• Универсальный.

Список необходимых компонентов

1. Понижающий трансформатор на 2 А (с 220 В до 24 В).
2. Регулятор напряжения lm317 IC с радиатором теплообменника.
3. Конденсаторы (поляризованные):
2200 микрофарад 50 В;
100 микрофарад 50 В;
1 микрофарада 50 В.
(замечание: номинал напряжения конденсаторов должен быть выше напряжения, подаваемого на их контакты).
4. Конденсатор (неполяризованный): 0.1 микрофарад.
5. Потенциометр 10 кОм.
6. Сопротивление 1 кОм.
7. Вольтметр с ЖК-дисплеем.
8. Плавкий предохранитель 2.5 А.
9. Винтовые зажимы.
10. Соединительный провод с вилкой.
11. Диоды 1n5822.
12. Монтажная плата.

Читайте также:  Насос для отопление частного дома своими руками

Составление электрической схемы

• В верхней части рисунка трансформатор подключен к сети переменного тока. Он понижает напряжение до 24 В, но при этом ток остается переменным с частотой 50 Гц.
• В нижней половине рисунка показано соединение четырех диодов в мост выпрямителя. Диоды 1n5822 пропускают ток при прямом смещении, и блокируют прохождение тока при обратном смещении. В результате выходное напряжение постоянного тока пульсирует с частотой в 100 Гц.

• На этом рисунке добавлен конденсатор емкостью в 2200 микрофарад, который фильтрует выходной ток и обеспечивает устойчивое напряжение в 24 В постоянного тока.
• На этом этапе можно последовательно включить в схему плавкий предохранитель для обеспечения ее защиты.
• Итак, мы имеем:
1. Понижающий трансформатор переменного тока до 24 В.
2. Преобразователь перемененного тока в пульсирующий постоянный ток с напряжением до 24 В.
3. Отфильтрованный ток для получения чистого и стабильного напряжения 24 В.
• Все это будет подключено к схеме регулятора напряжения lm317, описанной ниже

Введение в Lm317

• Теперь наша задача заключается в управлении выходным напряжением, изменяя его в соответствие с нашими нуждами. Для этого мы используем регулятор напряжения lm317.
• Lm317, как показано на рисунке, имеет 3 контакта. Это контакт регулировки (pin1 — ADJUST), контакт вывода (pin2 — OUNPUT), и контакт ввода (pin3 — INPUT).
• Регулятор lm317 во время работы выделяет тепло, поэтому ему требуется радиатор теплообменника
• Радиатор теплообменника представляет собой металлическую пластину, соединенную с интегральной схемой для рассеивания выделяемого ею тепла в окружающее пространство.

Объяснение схемы подключения Lm317

• Это продолжение предыдущей электрической схемы. Для лучшего понимания, схема подключения lm317 показана здесь подробно.
• Для обеспечения фильтрации на входе рекомендуется использовать конденсатор емкостью в 0.1 микрофарады. Очень желательно не размещать его вблизи основного фильтрующего конденсатора (в нашем случае, это конденсатор емкостью 2200 микрофарад).
• Использование конденсатора в 100 микрофарад рекомендуется для улучшения гашения ряби. Он предотвращает усиление ряби, возникающее при увеличении устанавливаемого напряжения.
• Конденсатор емкостью в 1 микрофараду улучшает переходную характеристику, но не является необходимым для стабилизации напряжения.
• Диоды защиты D1 и D2 (оба — 1n5822) обеспечивают путь разряда с низким импедансом, предотвращая разряд конденсатора в выход регулятора напряжения.
• Сопротивления R1 и R2 нужны для установки выходного напряжения
• На рисунке приведено уравнение управления. Здесь сопротивление R1 равно 1 кОм, а сопротивление R2 (потенциометр с сопротивлением 10 кОм) является переменным. Поэтому получаемое на выходе напряжение, согласно данному аппроксимированному уравнению, задается изменением сопротивления R2.
• При необходимости получить дополнительную информацию по характеристикам lm317 на интегральной схеме, такую информацию найти в Интернете.
• Теперь выходное напряжение можно подключить к вольтметру с ЖК-дисплеем, или можно использовать мультиметр для замера напряжения.
• Замечание: Величины сопротивлений R1 и R2 выбираются из соображений удобства. Другими словами, нет какого-либо твердого правила, которое говорило бы, что сопротивление R1 должно всегда быть 1 кОм, а сопротивление R2 должно быть переменным до 10 кОм. Кроме того, если нужно фиксированное выходное напряжение, то можно установить фиксированное сопротивление R2 вместо переменного. Используя приведенную управляющую формулу, можно выбирать параметры R1 и R2 по своему усмотрению.

Читайте также:  Коптильня с охладителем своими руками пошаговая инструкция

Завершение составления электрической схемы

• Окончательная электрическая схема выглядит так, как показано на рисунке.
• Теперь, пользуясь потенциометром (т.е. R2), можно получать требуемое напряжение на выходе.
• На выходе будет получено чистое, свободное от ряби, стабильное и постоянное напряжение, требуемое для питания конкретной нагрузки.

Источник

Источник стабильного тока от 5 мкА до 20 мА

Источник стабильного тока понадобился автору для отладки схем на биполярных транзисторах, которые, как известно, управляются током. Важное требование к нему — изоляция общего провода прибора от общего провода отлаживаемого устройства, поэтому источник питания пришлось взять автономный. Встроенный четырёхразрядный микроамперметр с автоматическим переключением пределов позволяет немного уменьшить количество аппаратуры, одновременно размещаемой на столе экспериментатора.

Идея схемы взята отсюда. Собственно источник стабильного тока устроен так:

Сопротивление резистора R1 некритично, нужно только, чтобы ток базы транзистора Т1 полностью открывал его. Коэффициент передачи тока транзистора BC559C — около 500, верхний предел регулировки тока у источника — 20 мА, значит, 200 мкА через базу — более чем достаточно. Резистор в 10 кОм обеспечит около 1 мА при 10 В, в принципе, можно увеличить его даже до 50 кОм.

Транзисторы Т1 и Т2 должны быть одинаковыми, но при больших токах параметры Т1 всё равно будут немного «уплывать» из-за небольшого нагрева.

Ток, подаваемый устройством во внешнюю цепь, определяется суммарным сопротивлением резисторов R3 — R5. Их функции: R3 — ограничение тока в случае, если оба переменных резистора вывернуты «в нуль», R4 — точная регулировка тока, R5 — грубая. Ток рассчитывается по формуле I=0.7/(R3+R4+R5), поэтому, например, если резистор R3 взять сопротивлением в 27 Ом, верхний предел регулировки тока составит 0.7/27=25,9мА. На практике получилось 21,6 мА, поскольку падение напряжения на транзисторе Т2 оказалось меньше — около 0,6 В.

Полная схема устройства:

«Крона» питает источник стабильного тока, два элемента ААА — четырёхразрядный микроамперметр. Поэтому выключатель питания взят с двумя нормально разомкнутыми группами контактов. Переключатель S1 позволяет отключить верхнюю клемму и замкнуть источник тока накоротко, чтобы настроить его заранее, до подключения к отлаживаемой схеме.

Параметры на практике получились следующими: максимальный ток — 21,6 мА, максимальный ток при «грубом» регуляторе, вывернутом «в нуль» — 0,3 мА, минимальный — 4,7 мкА. Правда, встроенный микроамперметр меньше 10 мкА не показывает, поэтому внешний иногда может и потребоваться. Выставленный ток остаётся практически неизменным при изменении напряжения на внешней цепи от 0 до 8 В.

Микроамперметр сделан из мультиметра с автоматическим переключением пределов JT-033A фирмы SHENZHEN JINGTENGWEI INDUSTRY CO.,LTD: переключатель режимов удалён, вместо него впаяны перемычки, заставляющие его всегда работать в режиме измерения тока.

Расположение компонентов в корпусе следующее:

Jim сделал симуляцию схемы в Falstad, автор её немного переработал для отображения большего количества параметров, получилось:

Источник

Оцените статью
Своими руками