- Плазменная горелка своими руками + генератор холодной плазмы и драйвер ZVS
- Плазма атмосферного давления — как получить холодную плазму?
- Плазменная горелка своими руками + электронная схема
- Драйвер ZVS — саморезонансный двухтактный несинхронизированный генератор
- Как подключить плазменную горелку своими руками?
- КРАТКИЙ БРИФИНГ
- Генерируем плазму в бутылке
Плазменная горелка своими руками + генератор холодной плазмы и драйвер ZVS
Главная страница » Плазменная горелка своими руками + генератор холодной плазмы и драйвер ZVS
Плазма представляет одно из четырёх базовых состояний материи, помимо существующих состояний – твёрдого, жидкого, газообразного. Структурной формой плазмы выступают волокна, пучки, а также двойные слои пучков по причине влияния электромагнитного поля. Плазма не имеет определенной формы и объёма, если не содержится в контейнере. Холодная плазма атмосферного давления (ХАП или Cold Atmospheric Plasma) отличается возможностью генерации и высвобождения струи при атмосферном давлении. Рассмотрим, как может быть сделана плазменная горелка своими руками на драйвере ZVS.
Плазма атмосферного давления — как получить холодную плазму?
Плазменная горелка атмосферного давления предполагает использование диэлектрического барьерного разряда, плазменной иглы и плазменного грифеля. Всё это потребуется в качестве инструментов получения холодной атмосферной плазмы (ХАП). Благодаря способности ХАП работать при атмосферном давлении, холодная плазма активно применяется для нужд биомедицинской инженерии:
- предотвращения образования биоплёнки,
- подавления роста микробов,
- отбеливания зубов,
- стерилизации стоматологических инструментов,
- индуктора ликвидации клеток,
- изготовления биочипов и т.д.
Вполне допустимо изготовить плазменную горелку своими руками, применяя распространённую схемотехнику. Для генерации плазмы, однако, требуется высокий энергетический потенциал.
Генерация плазмы струйным способом под атмосферным давлением возможна парой высоковольтных электродов (анод, катод). Анодный проводник пропускается сквозь трубку плазменной горелки, выполненную из кварцевого стекла. Катод в виде пластины размещается под выходным соплом трубки.
Плазменная горелка своими руками – структурная схема: 1 – источник питания 12В постоянного тока; 2 – электронная схема ZVS драйвера; 3 – трансформатор ударного возбуждения; 4 – анод в трубку плазменной горелки; 5 – катод; 6 – газ аргон в баллоне
Через трубку из кварцевого стекла на плазменную горелку предполагается подача газовой среды различного типа:
По мере заряда газов высокой энергией, физические и химические реакции приводят к выделению:
- электронов,
- ультрафиолетовых фотонов,
- заряженных частиц,
- химически активных окислителей,
- озона.
Для работы плазменной горелки при относительно низких температурах (менее 40°C) требуется формировать сильное электромагнитное поле.
Плазменная горелка своими руками + электронная схема
Существует несколько различных электрических схем, по которым изготавливается плазменная горелка своими руками. Посредством схемы реализуется генерация высокого напряжения порядка 7-10 кВ.
Одной из первых составленных электронных схем на плазменную горелку считается схема генератора Маркса (Erwin Otto Marx / 1924 год). Схема генерирует импульс высокого напряжения, но работает от источника постоянного тока низкого напряжения.
Принцип, заложенный в основу этой конструкции плазменной горелки, предусматривает заряд нескольких параллельно включаемых конденсаторов, с последующим последовательным разрядом каждого.
Учитывая, что постоянное напряжение представляет эхо-сигнал на той же длине волны, конденсаторы заряжаются до максимального потенциала и через разряд выдают накопленную энергию.
Фрагмент конструкции домашней (лабораторной) сборки своими руками: 1 – блок питания; 2 – ZVS драйвер; 3 – трансформатор ударного возбуждения (строчный от ТВ); 4 – катодная пластина; 5 – проводник анода
Другой классический генератор высокого напряжения под плазменную горелку — схема полумостового резонансного инвертора напряжения, разработанного Питером Баксандаллом (Peter Baxandall).
Здесь используется базовая схема LCR, с подключением к средней точке катушки Тесла. Так осуществляется подача питания к нагрузке последовательной цепи с элементами LR, включенными параллельно.
Эта конфигурация для плазменной горелки также имеет схему собственной резонансной частоты, управляющей прямоугольной формой волны. Таким способом получают синусоидальный ток, протекающий через катушку Тесла. Образуется низкое сопротивление потерь, следовательно, высокий коэффициент качества плазменной горелки.
Нелинейный управляемый высокочастотный инвертор также пригоден для индукции плазмы. Параллельный резонансный инвертор состоит из переключателей на транзисторах MOSFET, подключенных к выходному паразитному конденсатору и трансформатору для питания плазменного реактора.
С аналогичной концепцией переключения, инверторная плазменная горелка своими руками выстраивается на основе трансформатора ударного возбуждения, драйвера ZVS и резонатора Тесла.
Устройством реализуется возбуждение плазмы, разряжаемой через диэлектрический барьер. В этой схеме для плазменной горелки генератор фазовой автоподстройки частоты генерирует прямоугольный тактовый сигнал.
Схема широтно-импульсной модуляции функционирует как генератор волн для управления временем переключения импульсов транзисторов. Генерация струи плазменной горелки, получаемой от источника низкого постоянного напряжения при номинальном токе 3А и резонансного инвертора, описывается ниже.
Здесь используется схема переключения при нулевом напряжении (ZVS эффект), разработанная итальянским инженером Vladimiro Mazzilli (Владимиро Маццилли).
Драйвер ZVS, спроектированный итальянским инженером, по сути, является генератором Ройера, только несколько доработанным. Такая схема для плазменной горелки своими руками обеспечивает стабильную генерацию высокого напряжения в диапазоне 20 — 40 кВ.
Драйвер ZVS — саморезонансный двухтактный несинхронизированный генератор
Драйвер ZVS по схеме Маццилли фактически представляет саморезонансный двухтактный несинхронизированный генератор. Генерацию высокого напряжения плазменной горелки даёт трансформатор ударного возбуждения. Выход схемы ZVS согласован с таким трансформатором, чем обеспечивается повышение напряжения до рабочего уровня.
Чередующиеся импульсы генерируют достаточный потенциал для подачи энергии плазменной горелке через пару электродов для формирования струи плазмы при продувке газообразным аргоном.
Электронная схема ZVS драйвера (схема Маззилли), используемого под формирование холодной плазмы под атмосферным давлением на горелке, собранной своими руками
Формирующий драйвер ZVS, собранный по схеме Маццилли, состоит из двух частей (картинка выше). Первая часть — схема переключения на двух полевых МОП-транзисторах (IRFP260) и стабилитроне.
Транзисторами повышается входное напряжение 12 вольт постоянного тока 3А до высокочастотных синусоидальных сигналов, которыми приводится в действие трансформатор ударного возбуждения.
Напряжение переключения, включающее / выключающее полевой МОП-транзистор, собирается на конденсаторе ёмкостью 0,66 мкФ * 1200 вольт постоянного тока, и на катушке индуктивности 200 мкГн. Оба компонента включены параллельно первичной обмотке трансформатора ударного возбуждения.
После подачи питания ток течёт через оба стока полевых МОП-транзисторов. Один из полевых МОП-транзисторов включается быстрее другого и потребляет больше тока. Такое условие приводит к выключению второго полевого МОП-транзистора. Отмечается синусоидальный рост и спад напряжения.
Когда транзистор Q1 включается, напряжение на стоке транзистора Q1 устремляется на заземлю. Одновременно напряжение на истоке транзистора Q2 поднимается до пика и спадает в течение одного полупериода контура LC. Когда напряжение источника на транзисторе Q2 падает до нуля, ток затвора транзистора Q1 также падает до нуля.
В результате полупроводник Q1 отключается. Такая ситуация вызывает повышение напряжения стока транзистора Q1 и включение полупроводника Q2. МОП-транзисторы переключаются при наименьшей наведённой мощности. Аналогичный процесс повторяется для второй половины цикла.
С целью снижения потребления генератором больших пиковых токов и защиты от разрушения, катушка L1 подключается последовательно с источником питания и работает как дроссель, смягчая всплески тока.
Резистором R1 ограничивается ток, способный повредить полевой МОП-транзистор. Резистор R3 снижает напряжение смещением на землю. Стабилитроны регулируют напряжение на уровне 18 вольт. Диоды D1 и D2 ограничивают напряжение затвора.
Как подключить плазменную горелку своими руками?
Плюсовой провод вторичной обмотки трансформатора ударного возбуждения, передающий потенциал напряжения до 24,5 кВ, подключается к аноду плазменной горелки. Анод сделан в виде медного стержня, вставляемого внутрь шланга для прокачки газа аргона.
Прокачка газа (в данном случае — аргон) рассчитывается под расход около 50 л/мин. Заземляющий провод трансформатора ударного возбуждения подключается к пластине катода на фиксированном расстоянии от кромки сопла плазменной горелки.
При помощи информации: DOI
КРАТКИЙ БРИФИНГ
Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .
Источник
Генерируем плазму в бутылке
Наверняка многие слышали о таком понятии как плазма. Для некоторых это явление ассоциируется даже с мистическими явлениями. На само деле, плазмой является всего то ионизированный газ. Это явление образуется, когда через газ проходит высокое напряжение, к примеру, как молния.
Сегодня мы рассмотрим, как можно приручить это удивительное явление. Мы попробуем создать плазму у себя дома. Автор для этих целей использует стеклянную бутылка, подойдет также банка, но желательно, чтобы емкость была как можно меньшего объема. Дело в том, что для образования плазмы нужно снизить давление газа, а ручными методами это делать долго.
Для самоделки автор использовал простейшие компоненты и инструменты
Материалы и инструменты, которые использовал автор:
Список материалов:
— стеклянная прозрачная бутылка (или другая прозрачная емкость);
— два медных провода;
— горячий клей ;
— холодная сварка;
— небольшие резиновые трубочки;
— шприц большого объема;
— стержень из углерода (есть в батарейках, советских карандашах…);
— трансформатор от микроволновки;
— кусок длинного медного провода (тонкого);
— пневматические клапана для изготовления насосика (откачивает воздух из бутылки).
Процесс изготовления самоделки:
Шаг первый. Сверлим…
Самым сложным этапом будет просверлить отверстие в стекле, оно должно быть такого диаметра, чтобы в него мог зайти провод. То есть, небольшое. Для сверления лучше всего использовать предназначенные для этих целей сверла со специальными наконечниками.
Сверлится отверстие в донышке бутылки.
Далее берем крышку бутылки, в ней нужно просверлить два отверстия. Одно отверстие будет небольшого диаметра (такое же, как в донышке), оно используется для подключения электрода. А второе отверстие должно быть побольше, сюда устанавливается силиконовая трубочка для отсоса воздуха.
Шаг второй. Устанавливаем трубочку
Вставьте трубочку в просверленное отверстие и закрепите при помощи горячего клея, желательно с обеих сторон. Чтобы клей хорошо пристал к металлу, крышку желательно прогреть, к примеру, феном.
Шаг третий. Крепим первый электрод
Вставьте в крышку кусок провода, зачистите на конце от изоляции. Для герметичности провод с обеих сторон нужно приклеить при помощи горячего клея.
Теперь нужно сделать электрод, он изготавливается из графитового стержня. Графит используется в карандашах, но будьте внимательны, в современных карандашах графита можно и не встретить. Проверьте стержень на электропроводность, если он проводит ток, значит, это графит. Примотайте небольшой кусочек к концу провода.
Шаг пятый. Система зажигания
Для зажигания дуги нужен скачок высокого напряжения. В люминесцентных лампах, к примеру, это делают специальные пусковые конденсаторы, модуль повышения мощности и так далее. Но автор все это не использовал, вместо этого ему понадобился длинный кусок тонкого провода. Этот кусок крепим внутри банки между электродами. Один конец просто приматываем к одному из электродов, а другой конец располагаем недалеко от второго электрода.
Теперь, когда вы встряхнете бутылкой, конец провода коснется контакта и закоротит его. Вследствие чего провод раскалиться, начнет гореть и в бутылке зародится плазма.
К электродам прибора подключите провода от трансформатора микроволновой печи, но пока не включайте его в сеть для безопасности.
Убедитесь, что в банке конец центрального провода находится недалеко от электрода. Включите трансформатор и подайте напряжение на электроды. Теперь встряхните банку, центральный провод должен замкнуть цепь и плазма загорится ярким свечением! Берегите глаза, так как свет будет очень ярким.
Если все получилось, поздравляю, вы своими руками смогли создать дома плазму.
Источник