Полимерный электролит своими руками

Протонобменная мембрана: электролиз воды полимерным электролитом + конструкция своими руками

Главная страница » Протонобменная мембрана: электролиз воды полимерным электролитом + конструкция своими руками

Электролизу воды по технологии «ПОМ» (PEM — Proton Exchange Membrane) присуще использование твёрдого полимерного электролита, именуемого в инженерных кругах как протонобменная мембрана. Технологически протоны стабильно протекают внутри мембраны, тогда как электроны движутся по внешнему каналу. Соответственно, водород вырабатывается на катоде. Таким образом, электролиз с протонобменной мембраной («ПОМ») — есть не что иное, как электролиз воды в ячейке, снабженной твёрдым полимерным электролитом (SPE — Solid Polymer Electrolyte). Такого рода электролит обеспечивает проводимость протонов, разделение газообразных продуктов, а также электрическую изоляцию между электродами.

Основные моменты технологии «ПОМ» (PEM)

Электролизёр на протонобменной мембране предназначен для преодоления недостатков, обусловленных:

  • частичной нагрузкой,
  • низким потенциалом тока,
  • плотностью водорода,
  • работой при низком давлении.

Все эти проблемы характерны для работы щелочных электролизёров. Технология электролиза с применением протонобменной мембраны видится значимым процессом в производстве водорода, предназначенного под использование в качестве энергоносителя.

Электролиз протонобменной мембраной предлагает ускоренное динамическое время отклика, расширенный рабочий диапазон, высокий процент рабочей эффективности и чистоту газа на выходе (99,999%).

Структурная схема ячейки на протонобменной мембране: 1 – направление течения тока; 2 – движение электронов; 3 – область подачи воды; 4 – выход кислорода; 5 – выход водорода; 6 — электрическое напряжение; А – анод; Э – электролит; К – катод; Г — генератор

Одной из преимущественных сторон электролиза протонобменной мембраной является способность устройства работать при высокой плотности тока и степени эффективности процесса. Такие показатели способствуют снижению эксплуатационных расходов.

Полимерный электролит в конструкции электролизёра делает возможным использование очень тонкой протонобменной мембраны (100-200 мкм). Тем не менее, устройством обеспечивается электрохимическое сжатие и рост давления водорода на выходе.

Протонобменная мембрана современного электролизёра

Современные электролизёры объединены блоками и дают производительность водорода до 15-20 Нм 3 /ч. Активная поверхность ячеек достигает 600 см 2 . Модули (стопки) рабочих блоков содержат до 100 ячеек.

Чтобы увеличить мощности и расширить возможности энергопотребления выше 1 МВт (применительно к процессам накопления возобновляемой энергии), производители электролизёров с протонобменной мембраной стараются достичь:

  1. Увеличение активной поверхности на элемент.
  2. Усиление плотности тока (А/см 2 ), сохраняя при этом эффективность выше 83%.
  3. Наращивание сборки ячеек.

Следовательно, чем выше мощность электролиза, тем ниже стоимость установленного киловатта (или Нм 3 /ч). Однако на текущий момент технология находится на ранних стадиях применения.

Ещё одним существенным преимуществом электролизёров «ПОМ» является простота общей станционной системы. Электролизёры на твёрдой полимерной мембране питаются водой и электричеством.

Следовательно, нижние области штабелей станционной системы участвуют только на стадии сушки полученных газов. При давлении на выходе около 30 атм., сушка водорода до 4°C приводит к точке росы -33°C при атмосферном давлении.

Схема компонентов ячейки электролизёра «ПОМ»: 1 – выход кислорода; 2 – вход воды; 3, 9 – поточная плата; 4 – титановый газоразрядный элемент; 5 – иридиевый катализатор; 6 – нафионовая мембрана; 7 – платиновый катализатор; 8 – углеродный газоразрядный элемент; 10 – выход водорода

Секрет долгосрочной работы электролизёров «ПОМ» заключается в подготовке воды и контроле качества рабочей жидкости. Взятая из водопроводной сети, вода деионизируется через систему обратного осмоса, чем обеспечивается проводимость ниже 0,1 мкСм/см.

До момента пока мембранные катализаторы не перенасыщены ионами, эффективность клеточного стёка и срок службы обеспечен периодом более 60000 часов. Критические применения, такие как космическая сфера и военная область, показали высокую надёжность технологии.

Благодаря внедрению электролизёров с протонобменной мембраной в области традиционных промышленных применений, например:

  • охлаждение генераторов электростанций,
  • защита атмосферы при термообработке,
  • процессы изготовления листового стекла,

промышленные производства приобретают новое видение понимания технологии получения водорода непосредственно на месте.

Преимущественные стороны эксплуатации «ПОМ»

Оборудование на основе протонобменной мембраны отличается простым обращением и, прежде всего, требует меньшего технического обслуживания по сравнению с традиционными щелочными электролизёрами. Кислородно-конвертерный процесс охватывает как минимум 20-летний срок службы без необходимости замены клапанов или фитингов и без использования (обращения) агрессивных химических соединений.

Однако техническое обслуживание протонобменных мембран ограничивается обязательными правилами, такими как калибровка детектора водорода. Поскольку подготовка воды перед электрохимическим процессом имеет решающее значение, необходимо устанавливать первичные фильтры. Наконец, циркуляция воды в штабелированных модулях обеспечивается насосами с поддержкой смазки один раз в году и заменой подшипников каждые 5 лет.

Одна из многих вариаций исполнения электролизёра на протонобменной мембране. Такие системы обладают вполне достаточной мощностью выработки водородного топлива под производственные нужды

Гибкость и экономическая эффективность являются главными приоритетами для обеспечения конкуренции электролизёров на протонобменной мембране с другими — более устоявшимися на промышленном рынке технологиями. Уровни гибкости и безопасности, обеспечиваемые этим решением, не имеют приоритета.

Производство водорода непосредственно на месте больше не воспринимается процессом, требующим крайне сложного опасного оборудования. Исключительно высокопроизводительный, надежный, экономически эффективный способ предлагает технология электролиза с протонобменной мембраной.

Электролиз на протонобменной мембране также рассматривается многообещающей альтернативой хранения энергии водорода в конструкциях возобновляемых источников энергии. Одним словом – найден оптимальный способ получения водорода электролизом по технологии «ПОМ».

Протонобменная мембрана своими руками

В принципе, не составит особых сложностей своими руками изготовить простейший электролизёр на принципах протонобменной мебраны в домашних условиях. Для этого потребуется некоторое количество доступных компонентов и традиционный бытовой инструмент.

Читайте также:  Мебельный верстак своими руками

Детали для создания устройства «ПОМ» своими руками:

  • поликарбонат листовой (толщина 10 мм),
  • резиновая трубка (D вн = 8 мм),
  • листовая резина (толщина 3 мм),
  • шпильки металлические (М8 длина 180 мм),
  • гайки М8 обычные и купольные,
  • шайбы алюминиевые,
  • соединительные адаптеры,
  • двухходовые шаровые краны.

Для производства работ потребуется инструмент бытовой, в частности:

  • мелкие гаечные ключи;
  • электродрель;
  • обжимной инструмент;
  • кусачки;
  • лобзик (пилка);
  • маркер, линейка, нож.

Шаг #1 – изготовление торцевых стенок ячейки «ПОМ»

Торцевые стенки ячейки пртонобменной мембраны выполняются на основе листового поликарбоната размером 240×200 мм. Каждая стенка содержит 18 отверстий диаметром 8,5 мм для болтов M8, разнесённых по периметру и одно отверстие диаметром 11,4 мм с резьбой ¼ . Наличие резьбового отверстия на каждой пластине требуется для подключения кранов и шлангов.

Вот такая примерно пластина, создаваемая из поликарбоната, должна получиться в конечном итоге. В общей сложности потребуется, соответственно, пара таких деталей для изготовления системы

Шаг #2 – изготовление элементов электродов ячейки

Электроды устройства изготавливаются из нержавеющей листовой стали толщиной 0,7 мм. Конечно, лучшим материалом электродов видится золото, как высокостабильный и нереакционноспособный материал, но такой вариант обойдётся очень дорого. Поэтому оптимальный выбор для домашней конструкции – нержавеющая сталь (желательно аустенитная сталь 304 с низким содержанием углерода).

По сути, оба типа электродов одинаковы по исполнению. Разница состоит лишь в расположении отверстий диаметром 3 мм, благодаря которым достигается баланс газовой составляющей внутри конструкции. То же самое касается отверстий диаметром ¼. Обе пластины имеют размер 200×160 мм и метки для подвода питания.

Исполнение компонентов электролизёра – рабочих электродов из нержавеющей стали с размещением контактных лепестков и функциональных отверстий

Шаг #3 – прокладки, гайки, болты и сборка аппарата

В общей сложности потребуется 16 прокладок, сделанных из чистого ПВХ размером 200×160 мм с вырезом 136×176 мм и несколько скошенными углами 6×6 мм. Такие прокладки устанавливаются между рабочими электродами системы, способствуя созданию активной ячейки электролизёра по принципу протонобменной мембраны.

Фигурное исполнение поливинилхлоридной прокладки, которая располагается между электродами самодельной установки получения водорода

Далее устанавливаются 18 шпилек в отверстия одной из торцевых стенок, снабжаются необходимыми аксессуарами – гайками и шайбами. Затем нарезаются резиновые трубки по размеру для каждой из 18 шпилек и надеваются на металлическое основание, выступая в качестве изоляторов.

Начальный этап сборки электролизёра своими руками – установка стягивающих шпилек на одну из торцевых поликарбонатных пластин конструкции и оснащение шпилек резиновой изоляцией

На следующем этапе в области между болтами с резиновыми трубками укладывается прокладка ПВХ и следом электрод «А». Далее вновь накладывается прокладка ПВХ, следом электрод «B» и т.д. В общем итоге сборки получается 16 прокладок, 8 электродов «A» и 7 электродов «B».

Следует учитывать точное совпадение больших по диаметру отверстий электродов с отверстиями ¼, сделанных на торцевых стенках конструкции. В эти отверстия устанавливаются запорные краны. В результате получается готовое изделие, как на картинке ниже:

Готовая к эксплуатации конструкция, изготовленная своими руками. Мощность устройства, конечно, несопоставима с промышленными установками, но важен сам факт возможности производства водорода

Шаг #4 – Запуск изготовленной системы в работу

Перед запуском аппарат заполняется смесью воды (предпочтительно дистиллированной) и гидроксида натрия в соотношении 40:1. Резиновая трубка, соединённая с концевой частью выходного шарового крана, подключается к сборному контейнеру (например, к пластиковому пакету).

Далее следует подключить кабели к источнику питания 12В с током нагрузки не менее 20А. Если всё сделано правильно, контейнер начнёт заполняться водородом и кислородом сразу после подачи питания.

При помощи информации: Instructables

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник

Композиционная смесь для приготовления пленочного твердого полимерного электролита

Использование: производство химических источников тока, электрохимических датчиков и преобразователей энергии и информации. Сущность изобретения: композиционная смесь для приготовления пленочного твердого электролита содержит (мас.%): ацетат целлюлозы в качестве полимера — 9,80 — 9,90, ионопроводящую органическую соль замещенного тиапирилия — 0,34 — 1,34 и ацетон в качестве органического растворителя. Предлагаемая композиционная смесь позволяет получить пленочный полимерный электролит с повышенной проводимостью. 4 табл.

Изобретение относится к области электротехники и может быть использовано в производстве химических источников тока, электрохимических датчиков и преобразователей энергии и информации.

Известно использование в литиевых химических источниках тока ионопроводящих полимерных пленок [1,3] в которых ионная проводимость обеспечивается самим полимером, или благодаря тому, что полимер сам является источником носителей зарядов, или благодаря тому, что он служит матрицей для ионопроводящего материала, обеспечивая одновременно перемещение заряда и поддерживание ионопроводящего материала в твердом состоянии.

В качестве ионопроводящего наполнителя полимерной матрицы в пленочных полимерных электролитах известно использование -Al2O3. Получены материалы, которые в виде пленок толщиной 10 -2 .10 -3 см показывают проводимость 10 -3 . 10 -4 см/см [2] Пленку получают из суспензии -Al2O3 в растворе поликарбоната в диметилформамиде. Однако формирование из суспензии не позволяет получать пленки с однородной структурой и стабильной ионной проводимостью, так как не обеспечивает диспергирование до частиц одного размера: наполнитель образует агломераты различных типов и формирование ионопроводящих путей носит случайный характер. Кроме того, получение самого -Al2O3 технологически сложно, требует использования высоких температур и давлений и трудоемко.

Известен литиевый химический источник тока с твердым полимерным электролитом на основе поливинилацетата, легированного перхлоратом лития, путем растворения в метаноле [3] Электропроводность такого пленочного полимерного электролита очень низка и составляет 10 -11 см/см.

Читайте также:  Лучшая игрушка для ребенка своими руками

Известны литиевые химические источники тока с твердым полимерным электролитом, способные работать при температурах до 100 o C [4] Твердый полимерный электролит (толщина o C. Его электропроводность снижается на несколько порядков, нарушается контакт на границе раздела фаз электрод-электролит и ухудшаются электрохимические характеристики источника тока.

Целью настоящего изобретения является повышение электропроводности пленочного твердого полимерного электролита, улучшение контакта на границе раздела фаз электрод-электролит и электрических характеристик литиевого химического источника тока и упрощение технологии его изготовления.

Поставленная цель достигается тем, что в литиевом химическом источнике тока с твердым пленочным электролитом на основе полимера с наполнителем в качестве полимера использовали ацетат целлюлозы в виде раствора в ацетоне, а в качестве наполнителя-ионопроводящие органические соли замещенного тиапирилия (1, 2, 3, 4) при следующем соотношении компонентов, мас.

ионопроводящая органическая соль замещенного тиапирилия 0,34.1,34 ацетат целлюлозы 9,80.9,90 ацетон 88,86.89,76 В качестве ионопроводящей органической соли замещенного тиапирилия предпочтительна соль (1) с органическим катионом из трех шестичленных алициклов с радикалом диметиламинобензилиденом в положении 2/n, обеспечивающем увеличение цепи сопряжения.

Соли замещенного тиапирилия обладают как электронной, так и ионной проводимостью. Увеличение их электронной проводимости путем введения углеграфитовых материалов позволяет использовать соли замещенного тиапиридия в качестве эффективных органических катодов источников типа. Например, создавая условия, благоприятные для увеличения их ионной проводимости, можно получить эффективные твердые электролиты. Соли замещенного тиапирилия обладают стабильными характеристиками, технологичны; вещества, используемые для их синтеза, доступны и дешевы, синтез их прост и основан на характерной для солей реакции обмена.

Использование солей замещенного тиапирилия в качестве твердого электролита не известно.

Предполагаемое изобретение осуществляется следующим образом: готовят раствор ацетата целлюлозы заданной концентрации в органическом растворителе ацетоне; приготовленный раствор в объеме 5 мл переносят пипеткой в бюкс и смешивают с навеской соли замещенного тиапирилия до полного растворения; полученный вязкий раствор выливают в формы, установленные на массивную стеклянную основу; в качестве форм используют цилиндры определенного размера, например, пенициллиновые флаконы с отрезанным днищем; горловину форм с помощью ацетатного клея пришлифовывают к стеклянной основе; вводимая в форму композиция равномерно растекается по стеклянной поверхности основы и образует однородную по толщине пленку; сформированную пленку сушат в вытяжном шкафу при комнатной температуре (19. 20 o C) до постепенного веса;
для испытания пленки на электропроводность из нее вырубают по три образца диаметром 0,500 0,001 см.

Результаты испытаний приведены в таблицах 1 4 и показывают, что электропроводность изготовленного по предлагаемому способу твердого пленочного электролита максимальна при содержании соли 3,40.11,26 мас. в пленке и зависит от природы соли. Наиболее высокую электропроводность показали пленки на основе перхлората симм-октагидротиоксантилия (таблица 1) и перхлората 2,3-/2/-(диметиламинобензилиден)триметилентетрагидротиохромилия (таблица 3) при следующем соотношении компонентов, мас.

соль замещенного тиапирилия 0,34.1,34
ацетат целлюлозы 9,80.9,80
ацетон 88,86.89,76
Это соответствует содержанию соли в пленке твердого электролита 3,40. 13,52 мас. при толщине пленки 0,48.0,52 мм.

При концентрации соли тиапирилия в растворе ацетата целлюлозы в ацетоне ниже 0,34 мас. снижается количество электрических контактов в пленке, обеспечивающих перенос зарядов по ионам органического наполнителя соли тиапирилия. Это приводит к снижению электропроводности сформированной пленки твердого полимерного электролита.

Увеличение концентрации соли тиапирилия в растворе ацетата целлюлозы в ацетоне выше 1,34 мас. сопровождается снижением степени диссоциации и уменьшения концентрации ионов органического наполнителя в растворе и, соответственно, снижением количества электрических контактов в пленке.

Электропроводность пленочного твердого полимерного электролита сильно зависит от природы органического катиона и уменьшается в ряду предлагаемых перхлоратов производных тиапирилия:
1. 4-/n-диметиламинобензилиден/-симм-октагидротиоксантилия перхлорат * , см/см
18,410 5
2. симм-октагидрооксантилия перхлорат
14,310 -5
*концентрация соли в пленке 6,79 мас. толщина пленки 0,500,02 мм.

3. 2,3-(2′-(n-диметиламинобензилиден)-триметилентетрагидротиохромилия перхлорат 8,410 -5

4. 4-фенил-2-(n-метоксифенил)-5,6-тетраметилентиопирилия перхлорат
6,310 -5
Таким образом, наиболее высокие электролитические качества показали пленки твердого полимерного электролита на основе ацетонового раствора ацетата целлюлозы при введении в него 4-(n-диметиламинобензилиден)симм-октагидротиоксантилия перхлората, т.е. электропроводность пленочного твердого электролита с органической солью в качестве наполнителей возрастает при увеличении числа циклов в органическом катионе и при увеличении цепи сопряжения за счет введения в боковую цепь радикалов бензилиденового ряда.

Электропроводность твердого полимерного электролита, выбранного нами за прототип [4] на основе поливинилацетата, легированного перхлоратом лития в метаноле при толщине того же порядка, составляет при комнатной температуре 10 -11 см/см.

Новизна предлагаемого изобретения заключается в том, что в литиевом химическом источнике тока с твердым пленочным электролитом на основе полимера с наполнителем, в качестве полимера используют ацетат целлюлозы, растворенный в ацетоне, а в качестве наполнителя ионные органические соли, а именно соли замещенного тиапирилия. Полученный гибридный материал обеспечивает высокую ионную электропроводность твердого полимерного электролита в источнике тока при комнатной температуре.

Существенное отличие нового пленочного твердого полимерного электролита заключается в том, что, в отличие от прототипа, полимер ацетата целлюлозы используют в виде раствора в ацетоне, в котором растворяют соль замещенного тиапирилия. Таким образом, предлагаемая композиция представляет собой однофазную гомогенную систему, которая позволяет формовать однородные тонкие пленки в обычных условиях без применения высоких температур и давлений.

Предлагаемое изобретение поясняется следующими примерами.

Готовят 10%-ный раствор ацетата целлюлозы в ацетоне. В 5 мл приготовленного раствора растворяют навеску соли -симм-октагидротиоксантилия перхлората в количестве 0,030 г. Приготовленный раствор отвечает составу, мас.

ацетат целлюлозы 9,86 симм-октагидротиоксантилия
перхлорат 0,68
ацетон 89,46
Содержание наполнителя в сухой полимерной пленке 6,79% от массы сухой пленки. Толщина образующейся пленки 0,500,02 мм. Удельная электропроводность 14,310 -5 см/см (таблица 1).

Читайте также:  Как сложить угловой камин своими руками порядовка

Результаты испытаний пленок с различным содержанием наполнителя приведены в таблице 1.

Все растворы готовят, как описано в примере 1, путем растворения соответствующей навески соли 0,005; 0,010; 0,015; 0,030; 0,050; 0,650 г в 5 мл 10% -ного раствора ацетата целлюлозы а ацетоне. Концентрация соли в приготовленных растворах, мас. 0,11; 0,23; 0,34; 0,68; 1,12; 1,34. Как видно из таблицы 1, наиболее высокая электропроводность пленок твердого полимерного электролита на основе ацетата целлюлозы, растворенного в ацетоне, и органической соли симм-октагидротиоксантилия перхлората отвечает содержанию соли в сухой пленке 3,40.11,26 мас.

Результаты испытаний прототипа приведены в таблице 1.

Как видно из таблицы 1, предлагаемый пленочный твердый полимерный электролит на основе ацетата целлюлозы, растворенного в ацетоне, органической ионопроводящей соли симм-октагидротиоксантилия перхлората превосходит прототип по электропроводности в 10 3 .10 7 раз.

Это обусловлено тем, что предлагаемая новая композиция для изготовления пленочного твердого полимерного электролита, благодаря выбору ацетона в качестве растворителя полимера, представляет собой однофазную гомогенную систему, в которой взаимодействие между компонентами превосходит на молекулярном уровне. В результате необходимая концентрация электрических контактов, обеспечивая максимальную электропроводность пленки, достигается при меньшем наполнении и меньшей толщине пленок.

Готовят 10%-ный раствор ацетата целлюлозы в ацетоне. В 5 мл приготовленного раствора вводят навеску соли 4-(n-диметиламинобензилиден) симм-октагидротиоксантилия перхлората в количестве 0,030 г. Приготовленный раствор отвечает составу, мас.

ацетат целлюлозы 9,86
4-(n-диметиламинобензилиден симм-октагидрооксантилия перхлорат 0,68
ацетон 89,46
Содержание наполнителя в сухой полимерной пленке 6,79% от массы сухой пленки. Толщина изготовленной пленки 0,500,02 мм. Удельная электропроводность 18,4010 -5 см/см (таблица 2).

Результаты испытаний пленок с различным содержанием наполнителя в виде 4-(n-диметиламинобензилиден)-симм-октагидротиоксантилия перхлората приведены в таблице 2.

Пленки изготовлены из растворов, полученных, как описано в примерах 2 и 1.

Как видно из таблицы 2, с заменой симм-октагидротиоксантилия перхлората (ср. с таблицей 1) на 4-(n-диметиламинобензилиден)-симм-октагидротиоксантилия перхлората удельная электропроводность пленочного твердого полимерного электролита на основе ацетата целлюлозы, растворенного в ацетоне, и органической ионопроводящей соли по сравнению с прототипом еще более возрастает и максимальна при содержании соли в сухой пленке 11,26 мас.

Содержание соли, при котором достигается наиболее высокая электропроводность пленок твердого полимерного электролита на основе 4-(n-диметиламинобензилиден)-симм-октагидротиоксантилия перхлората — 6,79.15,00 мас.

Готовят 10%ный раствор ацетата целлюлозы в ацетоне. В 5 мл приготовленного раствора вводят навеску соли 2,3-(2′-(n-диметиламинобензилиден)) триметилентетрагидротиохромилия перхлората в количестве 0,050 г.

Приготовленный раствор отвечает составу, мас.

ацетат целлюлозы 9,82
2,3-(2′-(n-диметиламинобензилиден)) триметилентетрагидротиохромилия перхлората 1,12
ацетон 86,06
Содержание органической соли, ионопроводящей в сухой пленке, 11,26% от массы сухой пленки.

Толщина изготовленной пленки 0,500,02 мм. Удельная электропроводность 14,0310 5 см/см (таблица 3). Результаты испытаний пленок с различным содержанием 2,3-(2′-(n-диметаламинобензилиден)) триметилентетрагидротиохромилия перхлората приведены в таблице 3. Пленки имеют электропроводность того же порядка, что описано в примерах 1 и 2. Количество соли 2,3-(2′-(n-диметиламинобензилиден) триметилентетрагидротиохромилия перхлората, при котором достигается наиболее высокая электропроводность пленочного твердого полимерного электролита, 6,79.15,00 мас.

Как видно из сравнения данных, представленных в таблицах 3 и 2, замена 6-членного алицикла на 5-членный в структуре органического катиона приводит к заметному снижению электролитических свойств пленок их электропроводность снижается в 2 4 раза (даже при наличии боковой цепи сопряжения в виде радикала диметиламинобензилидена в положении 2/n).

Еще большее снижение электропроводности пленок твердого полимерного электролита на основе ацетата целлюлозы, растворенного в ацетоне, ионопроводящей органической соли наблюдается при использовании в качестве ионопроводящей органической соли 4-фенил-2-(n-метоксифенил)-5,6-тетраметилентиапирилия перхлората, что видно из сравнения данных, приведенных в таблицах 4 и 1 3.

Максимальная электропроводность, достигается в этом случае, (8,62. 8,63)10 -5 см/см при толщине пленки 0,500,02 мм при содержании органической соли в сухой пленке 3,40.6,79 мас.

Однако, как и во всех других случаях, электропроводность предлагаемых пленок остается выше на 3 7 порядков по сравнению с прототипом.

Новизна предлагаемого изобретения заключается в том, что в качестве ионопроводящего наполнителя в полимерную пленку вводится органическая соль замещенного тиапирилия.

Из литературных источников не известно использование ацетата целлюлозы в сочетании с органической солью замещенного тиапирилия в ацетоне в качестве органического растворителя с целью повышения электропроводности пленочного твердого полимерного электролита и улучшения характеристик литиевого химического источника тока.

Существенным отличием нового пленочного твердого полимерного электролита от прототипа является то, что для его получения используется ацетат целлюлозы, растворенный в ацетоне. Благодаря координационному взаимодействию катиона замещенного тиапирилия с электродными кислородными частицами гидроксильных (OH — ) и сложноэфирных группировок молекул ацетата целлюлозы, а также сольватационным процессам с участием молекул ацетона исходная рабочая композиция образует гомогенный, молекулярной степени дисперсности раствор, что обеспечивает оптимальную концентрацию электрических контактов в сухой пленке и сильное повышение ее электропроводности.

Использование вместо суспензии однофазной гомогенной электролитной системы обладает рядом преимуществ перед прототипом:
формирование более тонких, гибких и однородных пленок;
достижение высоких электролитических свойств при степени наполнения, на порядок меньшей по сравнению с прототипом;
упрощение технологии изготовления пленочного твердого полимерного электролита, простота синтеза солей замещенного тиапирилия (по реакции обмена), доступность и невысокая стоимость исходных материалов; для проведения процесса не требуются высокие температуры и давления.

Композиционная смесь для приготовления пленочного твердого полимерного электролита, содержащая полимер, ионопроводящую соль и органический растворитель, отличающаяся тем, что в качестве полимера взят ацетат целлюлозы, в качестве ионопроводящей соли ионопроводящая органическая соль замещенного тиапирилия, а в качестве растворителя ацетон при следующем соотношении компонентов, мас.

Ацетат целлюлозы 9,80 9,90
Ионопроводящая органическая соль замещенного тиапирилия 0,34 1,34
Ацетон 88,86 89,76а

Источник

Оцените статью
Своими руками