Подсветка для электронных часов своими руками

Подсветка для электронных часов своими руками

Импульсная подсветка часов

Автор: Просто Саня
Опубликовано 10.10.2012
Создано при помощи КотоРед.

Однажды случайно наткнулся в интернете на схему «Импульсная подсветка будильника» от В. Гричко, из г. Краснодара. Она меня заинтересовала и я решил её повторить. Только часы взял настенные. Кстати подобных схем, почему-то, мало.

Проснувшись ночью или рано утром, первое, что вы хотите — узнать время, чтобы не проспать на работу или в школу. В комнате темно, а вставать, чтобы включить свет, не хочется. Для облегчения этой задачи и предназначено предлагаемое устройство


Циферблат и стрелки часов освещает светодиод HL1, обладающий весьма большой яркостью (3,5. 4,5 кд) при токе около 20 мА. Включается устройство автоматически при наступлении темноты, когда сопротивление фотодиода VD1 увеличивается. Транзистор VT1 закрывается, начинает работать генератор, выполненный на транзисторах VT2, VT3. Его преимущество в том, что во время паузы между импульсами оказываются закрытыми оба транзистора, поэтому потребляемый от источника питания ток минимален.
Длительность импульса (освещение будильника светодиодом HL1) — 4 с, длительность паузы 26 с. Как показала практика, этого вполне достаточно, чтобы увидеть время. Но при желании можно установить более удобный для вас режим подбором резистора R3 или конденсатора С2. Кроме того, при такой работе устройства от батареи питания GB1 потребляется незначительный ток, что увеличивает срок ее службы.
Когда в комнате светло, ток потребления устройства не превышает нескольких микроампер, поэтому выключатель напряжения питания не предусмотрен.
Резисторы и конденсаторы могут быть любые малогабаритные (С 1 любой керамический или пленочный). Транзисторы любые из указанных на схеме серий. Вместо фотодиода ФД256 подойдут ФД256А, ФД256Б или малогабаритный высокоомный фоторезистор, например, СФ2-8, СФК-1М. Указанный на схеме светодиод заменим любым с большой силой света. Батарея GB1 может быть составлена из гальванических элементов или малогабаритных аккумуляторов, соединенных последовательно.
Детали монтируют на печатной плате из одностороннего фольгированного стеклотекстолита. Для светодиода желательно предусмотреть небольшой отражатель, что повысит освещенность будильника и оградит фотодиод от светового потока светодиода.
При налаживании устройства, возможно, придется подбором резистора R1 установить порог срабатывания при заданной минимальной освещенности. Если необходимо немного изменить яркость вспышек светодиода, следует точнее подобрать сопротивление резистора R4.
Устройство работоспособно при снижении питающего напряжения до четырех вольт. При этом уменьшается ток через светодиод, а значит, его яркость, но зато увеличивается длительность импульса до пяти секунд.

При повторении схемы пришлось внести некоторые изменения. Полевой транзистор заменил исходя из наличия. Похоже можно ставить любой. Фотодиод заменил, потому что у него очень резкая граница срабатывания. Не смог точно настроить на порог затемнения. Фоторезистор из старого фотоаппарата, «мыльницы», справился с этой задачей отлично. Только пришлось подобрать резистор R1.
Но в первую же ночь пришлось выключать подсветку! Жена устроила скандал! Часы так сильно освещали комнату что она просыпалась!
Но если уменьшить яркость светодиода, то при снижении напряжения питания он может и вовсе не загореться. Автор ведь указал в статье о снижении яркости при уменьшении напряжения питания.
Решил добавить в схему стабилизатор тока. Чтобы яркость светодиода не зависела от напряжения питания схемы. Вот что вышло.
Номинал резистора R6 не указал, т.к. у каждого он может быть свой. Отсутствие резистора, когда вход компаратора закорочен на катод, держит напряжение 2,5V. Светодиод еле светит. Увеличение резистора увеличивает напряжение стабилизации и яркость светодиода. Я просто поставил подстроечный резистор. Светодиодов может быть несколько. Параллельно. Ток у них менее 10 ма.
Схема работает без проблем и сразу. Печатку не привожу. Она очень простая. Первый вариант у меня был просто навесной. Т.е. комок радиодеталей.

Читайте также:  Квест своими руками для девочки 11 лет

Источник

Самодельные электронные часы, элементная база — часть 2

Привет, geektimes! В первой части статьи были рассмотрены принципы получения точного времени на самодельных часах. Пойдем дальше, и рассмотрим, как и на чем это время лучше выводить.

1. Устройства вывода

Итак, у нас есть некая платформа (Arduino, Raspberry, PIC/AVR/STM-контроллер, etc), и стоит задача подключить к нему некую индикацию. Есть множество вариантов, которые мы и рассмотрим.

Сегментная индикация

Тут все просто. Сегментный индикатор состоит из обычных светодиодов, которые банально подключаются к микроконтроллеру через гасящие резисторы.

Осторожно, траффик!

Плюсы: простота конструкции, хорошие углы обзора, невысокая цена.
Минус: количество отображаемой информации ограничено.
Конструкции индикаторов бывают двух видов, с общим катодом и общим анодом, внутри это выглядит примерно так (схема с сайта производителя).

Есть 1001 статья как подключить светодиод к микроконтроллеру, гугл в помощь. Сложности начинаются тогда, когда мы захотим сделать большие часы — ведь смотреть на мелкий индикатор не особо удобно. Тогда нам нужны такие индикаторы (фото с eBay):

Они питаются от 12В, и напрямую от микроконтроллера просто не заработают. Тут нам в помощь приходит микросхема CD4511, как раз для этого предназначенная. Она не только преобразует данные с 4-битной линии в нужные цифры, но и содержит встроенный транзисторный ключ для подачи напряжения на индикатор. Таким образом, нам в схеме нужно будет иметь «силовое» напряжение в 9-12В, и отдельный понижающий преобразователь (например L7805) для питания «логики» схемы.

Матричные индикаторы

По сути, это те же светодиоды, только в виде матрицы 8х8. Фото с eBay:

Продаются на eBay в виде одиночных модулей либо готовых блоков, например по 4 штуки. Управление ими весьма просто — на модулях уже распаяна микросхема MAX7219, обеспечивающая их работу и подключение к микроконтроллеру с помощью всего лишь 5 проводов. Для Arduino есть много библиотек, желающие могут посмотреть код.
Плюсы: невысокая цена, хорошие углы обзора и яркость.
Минус: невысокое разрешение. Но для задачи вывода времени вполне достаточно.

ЖК-индикаторы

ЖК-индикаторы бывают графические и текстовые.

Графические дороже, однако позволяют выводить более разнообразную информацию (например график атмосферного давления). Текстовые дешевле, и с ними проще работать, они также позволяют выводить псевдографику — есть возможность загружать в дисплей пользовательские символы.

Работать с ЖК-индикатором из кода несложно, но есть определенный минус — индикатор требует много управляющих линий (от 7 до 12) от микроконтроллера, что неудобно. Поэтому китайцы придумали совместить ЖК-индикатор с i2c-контроллером, получилось в итоге очень удобно — для подключения достаточно всего 4х проводов (фото с eBay).

ЖК-индикаторы достаточно дешевые (если брать на еБее), крупные, их просто подключать, и можно выводить разнообразную информацию. Единственный минус это не очень большие углы обзора.

Читайте также:  Коробочка монтессори своими руками для детей

OLED-индикаторы

Являются улучшенным продолжением предыдущего варианта. Варьируются от маленьких и дешевых с диагональю 1.1″, до больших и дорогих. Фото с eBay.

Собственно, хороши всем кроме цены. Что касается мелких индикаторов, размером 0.9-1.1″, то (кроме изучения работы с i2c) какое-то практическое применение им найти сложно.

Газоразрядные индикаторы (ИН-14, ИН-18)

Эти индикаторы сейчас весьма популярны, видимо из-за «теплого лампового звукасвета» и оригинальности конструкции.

(фото с сайта nocrotec.com)

Схема их подключения несколько сложнее, т.к. эти индикаторы для зажигания используют напряжение в 170В. Преобразователь из 12В=>180В может быть сделан на микросхеме MAX771. Для подачи напряжения на индикаторы используется советская микросхема К155ИД1, которая специально для этого и была создана. Цена вопроса при самостоятельном изготовлении: около 500р за каждый индикатор и 100р за К155ИД1, все остальные детали, как писали в старых журналах, «дефицитными не являются». Основная сложность тут в том, что и ИН-хх, и К155ИД1, давно сняты с производства, и купить их можно разве что на радиорынках или в немногих специализированных магазинах.

2. Выбор платформы

С индикацией мы более-менее разобрались, осталось решить, какую аппаратную платформу лучше использовать. Тут есть несколько вариантов (самодельные я не рассматриваю, т.к. тем кто умеет развести плату и припаять процессор, эта статья не нужна).

Arduino

Самый простой вариант для начинающих. Готовая плата стоит недорого (около 10$ на eBay с бесплатной доставкой), имеет все необходимые разъемы для программирования. Фото с eBay:

Под Arduino есть огромное количество разных библиотек (например для тех же ЖК-экранов, модулей реального времени), Arduino аппаратно совместима с различными дополнительными модулями.
Главный минус: сложность отладки (только через консоль последовательного порта) и довольно-таки слабый по современным меркам процессор (2КБайт RAM и 16МГц).
Главный плюс: можно сделать много чего, практически не заморачиваясь с пайкой, покупкой программатора и разводкой плат, модули достаточно соединить друг с другом.

32-разрядные процессоры STM

Для тех кто захочет что-то помощнее, есть готовые платы с процессорами STM, например плата с STM32F103RBT6 и TFT-экраном. Фото с eBay:

Здесь мы уже имеем полноценную отладку в полноценной IDE (из всех разных мне больше понравилась Coocox IDE), однако понадобится отдельный программатор-отладчик ST-LINK с разъемом JTAG (цена вопроса 20-40$ на eBay). Как вариант, можно купить отладочную плату STM32F4Discovery, на которой этот программатор уже встроен, и его можно использовать отдельно.

Raspberry PI

И наконец, для тех кто хочет полной интеграции с современным миром, есть одноплатные компьютеры с Linux, всем уже наверное известные Raspberry PI. Фото с eBay:

Это полноценный компьютер с Linux, гигабайтом RAM и 4х-ядерным процессором на борту. С краю платы выведена панель из 40 пинов, позволяющая подключать различную периферию (пины доступны из кода, например на Python, не говоря о C/C++), есть также стандартный USB в виде 4х разъемов (можно подключить WiFi). Так же есть стандартный HDMI.
Мощности платы хватит к примеру, не только чтобы выводить время, но и чтобы держать HTTP-сервер для настройки параметров через web-интерфейс, подгружать прогноз погоды через интернет, и так далее. В общем, простор для полета фантазии большой.

Читайте также:  Пояс с цветами сделать своими руками

С Raspberry (и процессорами STM32) есть одна единственная сложность — ее пины используют 3-вольтовую логику, а большинство внешних устройств (например ЖК-экраны) работают «по старинке» от 5В. Можно конечно подключить и так, в принципе заработает, но это не совсем правильный метод, да и испортить плату за 50$ как-то жалко. Правильный способ — использовать «logic level converter», который на eBay стоит всего 1-2$.
Фото с eBay:

Теперь достаточно подключить наше устройство через такой модуль, и все параметры будут согласованы.

ESP8266

Способ скорее экзотический, но довольно-таки перспективный в силу компактности и дешевизны решения. За совсем небольшие деньги (около 4-5$ на eBay) можно купить модуль ESP8266, содержащий процессор и WiFi на борту.
Фото с eBay:

Изначально такие модули предназначались как WiFi-мост для обмена по serial-порту, однако энтузиастами было написано множество альтернативных прошивок, позволяющих работать с датчиками, i2c-устройствами, PWM и пр. Гипотетически вполне возможно получать время от NTP-сервера и выводить его по i2c на дисплей. Для тех кто хочет подключить много различной периферии, есть специальные платы NodeMCU с большим числом выводов, цена вопроса около 500р (разумеется на eBay):

Единственный минус — ESP8266 имеет очень мало памяти RAM (в зависимости от прошивки, от 1 до 32КБайт), но задача от этого становится даже интересней. Модули ESP8266 используют 3-вольтовую логику, так что вышеприведенный конвертор уровней тут также пригодится.

На этом вводный экскурс в самодельную электронику можно закончить, автор желает всем удачных экспериментов.

Вместо заключения

Я в итоге остановился на использовании Raspberry PI с текстовым индикатором, настроенным на работу с псевдографикой (что вышло дешевле чем графический экран той же диагонали). Сфоткал экран настольных часов во время написания этой статьи.

Часы выводят точное время, взятое из Интернета, и погоду которая обновляется с Яндекса, все это написано на Python, и вполне работает уже несколько месяцев. Параллельно на часах запущен FTP-сервер, что позволяет (вкупе с пробросом портов на роутере) обновить на них прошивку не только из дома, но и из любого места где есть Интернет. Как бонус, ресурсов Raspberry в принципе хватит и для подключения камеры и/или микрофона с возможностью удаленного наблюдения за квартирой, или для управлением различными модулями/реле/датчиками. Можно добавить всякие «плюшки», типа светодиодной индикации о пришедшей почте, и так далее.

PS: Почему eBay?
Как можно было видеть, для всех девайсов приводились цены или фото с ебея. Почему так? К сожалению, наши магазины часто живут по принципу «за 1$ купил, за 3$ продал, на эти 2 процента и живу». В качестве простого примера, Arduino Uno R3 стоит (на момент написания статьи) 3600р в Петербурге, и 350р на eBay с бесплатной доставкой из Китая. Разница действительно на порядок, безо всяких литературных преувеличений. Да, придется подождать месяц чтобы забрать посылку на почте, но такая разница в цене думаю, того стоит. Но впрочем, если кому-то надо прямо сейчас и срочно, то наверно и в местных магазинах есть выбор, тут каждый решает сам.

Источник

Оцените статью
Своими руками