Подстроечный резистор своими руками

ПОТЕНЦИОМЕТР ИЗ МНОГООБОРОТНОГО ПОДСТРОЕЧНОГО РЕЗИСТОРА

Многооборотные переменные резисторы (справочная ссылка) товар дорогой, да и ассортимент их в магазинах не широк, покупал такой электронный компонент лишь однажды, когда собирался переделывать МД Тесоро Сибола в Тесоро Вакуеро, приобрёл импортный переменный резистор на 50 кОм за 350 рублей. В остальных случаях всё как-то обходился обычными переменниками. Но вот возникла непреодолимая ситуация когда потребовалось в блок питания установить, вместо стоящего там многооборотного подстроечного резистора 1 кОм переменный многооборотный резистор, для его на внешнюю панель чтобы иметь возможность постоянной регулировки выходного напряжения. Потребность заставила изыскать возможность. Удалось освоить вариант доработки подстроечного многооборотника, при котором повторяемость изготовления получается с первой попытки независимо от навыков в подобной работе.

Необходимое для работы

Для изготовления желаемого необходимо следующее: многооборотный подстроечный резистор соответствующего сопротивления, обычный переменный резистор СПО в качестве донора (можно и желательно неисправный или даже только корпус от него) и использованная зажигалка. Подстроечник будет задействован в том виде в каком есть, от переменного резистора берётся корпус и шток, а из зажигалки извлекается втулка которая соединит регулировочный винт подстроечника и шток от резистора СПО.

Вот она, на переднем плане фото, миниатюрная втулочка добытая из недр одноразовой зажигалки. С одной стороны в ней имеется отверстие диаметром 1,1 мм, с другой отверстие 3 мм, как раз по диаметру штока переменного резистора, при его отсутствии можно использовать любой подходящий винт М3 со срезанной шляпкой. Диаметр головки регулировочного винта у многооборотника равен 1,5 мм, сверлом именно такого диаметра рассверливается втулка со стороны меньшего отверстия.

Разбирается донор, в дело пойдёт только шток, очищенный от пластмассового элемента и корпус. Один край штока желательно сточить на конус до 2 мм, внутри втулки имеется переходное отверстие диаметром чуть больше 2 мм и конусная часть войдёт в него с натягом.

Сборка регулятора

Головка регулировочного винта многооборотника и конусная часть штока обрабатываются активным флюсом и слегка (именно слегка) залуживаются, то же самое делается с отверстиями втулки. Затем втулка нагревается до температуры плавления олова и устанавливается на головку регулировочного винта многооборотного подстроечного резистора. Олово остывает и прочно фиксирует втулку по месту. Затем нагревается шток и так же вставляется во втулку. Данное соединение с первой попытки получается достаточно прочным и абсолютно соосным, то есть при вращении отсутствует биение, которое может постепенно привести к разрушению конструкции.

В корпусе делается пропил по ширине корпуса многооборотника на глубину, при которой соединительная втулка упрётся в дно. Многооборотник с удлинённым штоком вставляем в корпус. Никакой дополнительной фиксации даже в виде клея здесь не требуется. А вот со стороны штока можно (но не обязательно) установить, ранее снятый с этого места, шайбу — фиксатор. И запаять её.

Результат

Готовый многооборотный резистор установлен на своё место на панели. Работать он будет идентично переменному резистору заводского изготовления, а что до внешнего вида, так через панель не видать, что там за конструкция. А вот экономия денежных средств налицо.

Читайте также:  Наживка для форели своими руками

Сознаюсь, изначально пытался обойтись без соединительной втулки, паял шток напрямую к головке регулировочного винта, сделал несколько попыток, но полной соосности сопрягаемых элементов добиться не удалось. А со втулкой никаких проблем. Итак вопрос с многооборотными резисторами для собственных нужд решён. Автор Babay iz Barnaula.

Форум по обсуждению материала ПОТЕНЦИОМЕТР ИЗ МНОГООБОРОТНОГО ПОДСТРОЕЧНОГО РЕЗИСТОРА

Изучим теорию работы и проведём несколько опытов с 1N4148 — диодом быстрого переключения.

Изучим различные типы стабилизаторов напряжения — от простых схем на стабилитроне, до транзисторных и микросхемных.

Теория и практика ОУ, описание работы и подключение типового операционного усилителя — микросхемы LM358.

Источник

Простейший резистор своими руками

Для любого радиолюбителя резистор – деталь, которая нужна практически в каждой даже простейшей схеме. В тривиальной ситуации сопротивление – это катушка из провода, который плохо проводит электрический ток, в качестве металла часто используют константан.

Для переменного или постоянного резистора в экспериментальных целях можно использовать графит, стержень из которого находится внутри простого карандаша. Он имеет неплохую электропроводность. Поэтому для самодельного резистора нужен тонкий его слой, который можно нанести на бумагу и комбинировать нужное сопротивление до нескольких сотен килоом.

Базируясь на свойствах графита построим работающую модель резистора на бумажном носителе. При этом будем исходить из простой арифметики: чем длиннее проводник, тем больше его электрическое сопротивление.

На фото ниже индикатор показывает в мегаомах.

На табло видно, что полоса графита, которая в 2 раза длиннее, имеет, соответственно, в 2 раза больший показатель сопротивления. Обратите внимание, что ширина полос одинакова.

Широкий проводник имеет меньшее сопротивление.

Полоску из графита, нанесенную на бумагу, легко превратить в экспериментальный переменный резистор, или, иначе назовем его – реостат.

Источник

Резистор

Здравствуйте уважаемый читатель блога Моя лаборатория радиолюбителя.

В сегодняшнем материале хотелось бы освятить довольно таки нужную тему о резисторах, в особенности вопрос о том, что такое резистор, возникает у новичков радиолюбителей. В этой обширной статейке я довольно таки подробно постараюсь объяснить, что такое резистор, как он выглядит и где применяется.

И так начнем повествование о резисторах, поэтому усаживаемся поудобнее за нашими мониторами, желательно сделать себе кофе и погрузиться в мир радиоэлектроники 🙂

Что такое резистор? Резистор – это пассивный элемент электрической схемы, создающий сопротивление электрическому току.
Где применяются резисторы? Применяются резисторы во всех схемах, и чаще, в количественном отношении, чем другие элементы схемы. С помощью резисторов регулируют значения тока и напряжения.
Единица измерения сопротивления – Ом. Измерения записываются в сторону увеличения: Ом, кОм(1000Ом)-килоом, мОм(1.000.000Ом)-мегаом и Гом(1.000.000.000Ом)-гигаом.

Типы резисторов:

Постоянные резисторы – это резисторы имеющие постоянное, неизменное, сопротивление независимое от воздействия окружающих воздействий, таких как свет, температура.
— так обозначаются на схемах постоянные резисторы и подписываются буквой R

Переменные резисторы — это резисторы меняющее свое сопротивление в зависимости от положения движка переменного резистора.

— так обозначаются переменные резисторы в схемах

Такие переменные резисторы используются в многой бытовой технике вокруг нас, старые телевизоры, где звук регулировали крутя ручку звука и подобные

Подстроечные резисторы — это те же самые переменные резисторы, но используемые для точных настроек токов и напряжений схем. Устанавливаются преимущественно на самих печатных платах.
— обозначение подстроечных резисторов на схемах

Читайте также:  Как сплести красивые браслеты своими руками

Фоторезисторы – это резисторы меняющие свое сопротивление под действием света.
— обозначение фоторезистора на схеме

Терморезисторы – резисторы меняющие свое сопротивление в зависимости от температуры, приложенной к нему
— схематическое обозначение терморезистор

Маркировка резисторов:

Маркировка по ГОСТу номинальный ряд
Все резисторы, выпускаемые нашей промышленностью, имеют свою особую сокращенную маркировку, дабы было удобно читать номинал на маленьких резисторах. Для сокращения используют буквы указывающие единицу измерения
E и R – единица Ома
К – единица кОм
M- мОм
А вот сотни единиц, обозначаются буквами, стоящими перед цифрами.
Например: 0,33Ом -E33, 33Ом-33E, 33кОм-33K, 330кОм-M33, 33мОм-33M.

Заграничный ГОСТ
Тут немного проще. По американским стандартам маркируются резисторы 3 буквами, две первые указывающие номинал, а третья — количество нулей добавляемых к номиналу
Например: 0,33Ом –R33, 33Ом-330, 33кОм-333, 330кОм-334, 33мОм-336.

Цветовая маркировка резисторов
На мой взгляд самая удобная и простая в использовании. Обозначается она разноцветными полосками на резисторе. Полосок бывает 4 и 5. Научится читать резисторы цветной маркировки очень просто:

-Первые две полосы указывают номинал резистора.

-Третья полоска, у резисторов с 4 полосами, указывает множитель, а у резисторов с 5 полосами, указывает третью цифру номинала.

-Четвертая полоса в 4 полосной маркировке говорит о точности номинала, а в 5 полосной указывает на множитель номинала.

-Пятая полоса указывает на точность

Что бы удобно было ориентироваться, вот табличка с цветовой кодировкой резисторов

Цвет Число Множитель Точность
Черный 0 1
Коричневый 1 10 1 %
Красный 2 100 2 %
Оранжевый 3 1 000
Желтый 4 10 000
Зеленый 5 100 000 0,5 %
Синий 6 1 000 000 0,25 %
Фиолетовый 7 10 000 000 0,1 %
Серый 8 100 000 000
Белый 9 1 000 000 000
Серебристый 0,01 10 %
Золотой 0,1 5 %

К примеру, резистор номиналом 1 кОм с погрешностью 1% будет иметь код — коричневый черный красный коричневый

Мощность резисторов и рассеиваемая мощность

Каждый резистор, пропуская через себя напряжение, создает определенное падение напряжение, что обусловлено законом Ома (R=U\I). Из-за этого на резисторе начинает рассеиваться тепло — это и есть рассеиваемая мощность. Эту мощность мы рассчитываем для сбережения целостности резистора, потому-то резистор имеют свою определенную рассеиваемую мощность, то есть сколько тепла он сможет выделить при падении на нем напряжения. Рассчитывается мощность по формуле P= I*U либо эти две для вычисления промежуточного параметра P=I^2*R или P=U^2/R

Для примера нам нужно рассчитать балластный резистор для блока питания 5В с током нагрузки 0,1А. Сначала по закону Ома рассчитаем, какое сопротивление резистора нам нужно R=5/0.1=50(Ом). Имея сопротивления резистора, рассчитываем мощность резистора P=5*0.1=0.5Вт.

То есть наш балластный резистор должен быть сопротивлением 50Ом и рассеиваемой мощностью 1ВТ, а 1 Вт — потому что всегда нужно брать резисторы с запасом в 1.5-2 раза, что бы небыло ситуаций как на этой очень удачно подобранной картинке 🙂

Поэтому запоминаем, что необходимо брать мощность резистора в 2 раза большей от расчетной!

Мощность резисторов на схемах указываются так:
— мощностью рассеивания 0,125 Вт
— мощностью рассеивания 0,25 Вт
— мощностью рассеивания 0,5 Вт
— мощностью рассеивания 1 Вт
— мощностью рассеивания 2 Вт
— мощностью рассеивания 5 Вт

Читайте также:  Клапан отбора своими руками

Есть и далее продолжение маркировки, но это уже не обязательно, потому что это саамы ходовые мощности и больше редко используются в схемах

Последовательное и параллельное соединение резисторов
Так же для достижения нужного нам сопротивления мы можем подключать последовательно резисторы

, где общее сопротивление будет равно сумме всех сопротивлений и считается по формуле R=R1+R2+R3
И подключать резисторы параллельно

, где общее сопротивление будет равно сумме величин, обратно пропорциональных сопротивлению 1/R=1/R1+1/R2+1/R3. А при параллельном соединении 2-х резисторов удобно пользоваться этой формулой R=R1*R2/(R1+R2)

Делитель напряжения на резисторе

Делитель напряжения на резисторах часто используется в схемах для получения нужного напряжениях в отдельных цепях схемы.
Делитель напряжение, это два последовательно подключенные резистора. В нем выходное напряжение напрямую зависит от номиналов сопротивлений и питающего напряжения. Переменные резисторы так же являются делителями напряжения.

И прежде чем мы начнем рассматривать формулы, давайте выясним один очень важный момент.
Что бы четко рассчитывать нужное нам напряжение на выходе, используйте R2 сопротивлением в 100 раз меньше сопротивления нагрузки подключенной к выходу делителя

Рассмотрим самые нужные формулы для расчета делителя:

1. Нам известно входящее напряжение Uвх и сопротивление R1 и R2.
Uвых=Uвх*R2/(R1+R2)
Например, входящее напряжение 12В, резисторы R1=2.2к и R2=1к. Uвых=12В*1000Ом/3200Ом=3.75В

2. Известно нужное Uвых и сопротивление R1 и R2.
Uвх=Uвых*(R1+R2)/R2
Например, нам нужно получить 5 вольт для питания, резисторы R1=2.2к и R2=1к. Uвх=5В*3200Ом/1000Ом=16В

3. Определим значение R1 при известном Uвх, Uвых
R1=Uвх*R2/Uвых-R2
Например, входящее напряжение 12 вольт, выходящее напряжение 5В, значение R2=1к
R1= 12В*1000Ом/5В – 1000Ом=1400Ом

4. Определим значения R1 и R2, зная их суммарное сопротивление Rобщ и Uвх и Uвых
R2=Uвых*Rобщ/Uвх, R1= Rобщ-R2
Например R2=5В*3200Ом/12В=1333Ом, R1= 3200-1333=1867(Ом)

Это самые ходовый формулы, которые я использую уже около года, с тех пор, как только узнал о них

Делитель тока на резисторе

Делитель тока на резисторах необходим для того, что бы определенную нужную часть тока перевести в другое плече делителя и после вернуть его обратно.

Делитель тока это параллельно соединенные резисторы, делящие между собой протекаемый ток.

Применяют делители тока для измерительных приборов, когда основной ток проходит через шунтирующий резистор, а малая часть тока проходит через катушки измерительного прибора, которая является вторым сопротивлением в схеме. Так же применяется для усиления тока, когда одного резистора не хватает

Формула расчета шунта для измерительных приборов R2 =I1*R1/(Iобщ-I1),где R1 это сопротивление прибора, а I1 это ток отклонения катушки прибора.

Предположим что максимальный ток отклонения катушки 2мА, а внутреннее сопротивление катушки 300Ом. Максимальный ток, проходящий через цепь 5А. Исходя их формулы R2=0.002*300/5-0.002=0.12Ом, рассчитаем рассеиваемую мощность по формуле P=I^2*R , где I2=Iобщ-I1, P=5*5*0,12=3Вт. Поэтому берем резистор 5Вт.

Расчет делителя проходит по формуле I1=Iобщ*R2/(R1+R2) и I2=Iобщ*R1/(R1+R2)
Для примера. Рассчитаем токи, проходящие через R1=0,1Ом и R2=0,2Ом, если сумарный ток 5А.
I1=5А*0,2Ом/0,3Ом=3,33А и I2=5А*0,1Ом/0,3Ом=1,66А, определили проходящие токи, а теперь рассчитаем рассеиваемую мощность по формуле P=I^2*R. P1=3.33*3.33*0.1=1.1(Вт), P2=1.66*1.66*0.2=0.55Вт

И на этой ноте можно заканчивать материал. Изучайте, понимайте, задавайте вопросы.
С ув. Admin-чек

Источник

Оцените статью
Своими руками