- Спиральная антенна своими руками
- Как собрать спиральную антенну
- Расчет спиральной антенны
- Спиральные антенны: виды и фото
- Устройство антенны
- Расчет основных размеров антенны
- Классификация по рабочему диапазону
- Самостоятельное изготовление антенны
- Особенности антенны на 433 МГц
- Самодельная антенна на 433 МГц
- Приемная антенна ДМВ
- Другие виды приемопередающей аппаратуры
- Сравнение спиральных и узконаправленных антенн
- Укороченная антенна
- Заключение
Спиральная антенна своими руками
Считается, что спиральная антенна характеризуется круговой поляризацией, но мнение ошибочно. В действительности структура витков такова, что принимаются волны и с линейной поляризацией. Это удобно, когда присутствует возможность работать на любой структуре волны. И спиральные антенны используются как облучатель зеркал на спутнике. Для радиолюбителей недостаток в том, что волна с линейной поляризацией ослабляется на три децибела, как известно, в радио и телевещании другого не используется. В стране спиральный облучатель уместен лишь для ловли НТВ+ со спутника, там метод не используется. Ряд специальных применений указанных антенн обсуждать не станем. Впрочем, запросы по теме встречаются в сети. Кому пригодится спиральная антенна, свитая из проволоки и одетая на кусок трубы, ответить не беремся, даже в сборнике работ радиолюбителей этот класс изделий отсутствует напрочь.
Конструкция спиральной антенны
Как собрать спиральную антенну
Спиральная антенная напоминает инфракрасный обогреватель специфической конструкции. В СССР военные заводы выпускали приборы бытового назначения. Отсюда сходство параболических тарелок и обогревателей. Для сборки понадобится узнать диаметр и шаг намотки проволоки, количество витков. Из материалов понадобятся:
- Стальной лист для экрана, произвольной толщины, чтобы не гнулся от ветра и прочих коллизий.
- Отрез проволоки, чтобы хватило намотать витки с запасом.
- Питающий кабель: для телевидения 75 Ом, для радио 50 Ом.
- Труба пластиковая нужного диаметра.
Спиральные антенны относятся к классу бегущей волны, сопротивление устройств велико, чтобы, правильно рассчитав устройство, подключить без согласования. Сначала размечается труба, с запасом, чтобы удалось воткнуть в экран и приклеить. Вдоль оси (лучше с двух сторон) размечается шаг намотки. В будущем риски используются для выравнивания. Отступите спереди пару-тройку сантиметров, начинайте работать маркером. Обратите внимание, что с обратной стороны виток смещается ровно на полшага.
Спираль наматывается на трубу без учета шага, с нужным числом витков. В дальнейшем, начиная с первой риски, нужно растянуть проволоку правильным образом. Чтобы не происходило смещения в дальнейшем, следует правильное положение зафиксировать каплями клея. Примерно по три-четыре на виток. Тем временем изготовим экран.
Выбирайте квадрат со стороной порядка пяти диаметров трубы намотки. Нет разницы, какова толщина стали, выдерживайте прочностные характеристики. В собранном виде экран перпендикулярен трубе.
Для электрической сборки следует в области окончания спирали (основание трубы) просверлить отверстие и проволоку пропустить внутрь. За экраном в боковине проделываем дополнительную дыру, куда пропускаем оплетку питающего кабель. Электрически центральная жила соединяется со спиралью, экран фидера с экраном антенны. Образуется конструкция для приема и передачи волн. Труба со стальным экраном соединяются клеем-герметиком по уголку, чтобы обеспечить строгую перпендикулярность деталей. Ключевые моменты:
- Спираль и экран изготавливаются из проводящего материала, к примеру, меди.
- Труба из диэлектрика.
Расчет спиральной антенны
Спиральные антенны хороши способностью ловить любой тип волны, используемый в наземном вещании. Однако для ловли радио следует ось направить вверх, экран же расположится горизонтально. Устройству присущи ярко выраженные направленные свойства, не ждите, что получится охватить ряд вышек из одной точки. Не так просто. Диаграмма направленности зависит от габаритов спиральной антенны и сильно:
- Если длина витка много меньше длины волны, преобладает боковое излучение, поперек оси антенны. Причем поляризация не круговая.
- В идеальном случае длина витка укладывается в рамки 0,75 – 1,3 длины волны. В этом случае наблюдаем главный лепесток диаграммы направленности, смотрящий вперед. Разумеется, необходим экран.
- Если длина спирали больше 1,5 длины волны, образуется два лепестка, направленных в переднюю полуплоскость. Точнее говоря, получается нечто, напоминающее конусную поверхность.
Косвенно (по второму пункту) читатели уже составили представление о диапазоне. В два раза полосу расширим, применяя не цилиндрическую, а конусную спираль (коническая спиральная антенна). Рекомендуем онлайн калькулятор на сайте http://aerial.dxham.ru/onlajn-raschety/raschety-antenn/raschet-spiralnoj-antenny. Здесь предлагается задать частоту, шаг намотки спирали и длину излучателя:
- От длины намотки спирали зависит ширина главного лепестка диаграммы направленности. Варьируйте число витков и наблюдайте за параметром (находится в низу страницы калькулятора). Едва приметно меняется диаметр намотки спирали. Этому нет объяснения, создателям калькулятора виднее. Разумеется, понадобится больше меди, что отражается в соответствующих параметрах.
- Добавим, что с увеличением длины растет и усиление. Это типичный эффект: сужается лепесток – растет усиление. Площадь диаграммы направленности – величина постоянная. Как говорил Ломоносов, если в одном месте чего прибудет, в другом непременно убыть должно. Заметьте, что с ростом витков едва приметно падает ширина полосы пропускания.
- От шага намотки зависит усиление: чем больше цифра, тем ниже усиление, тем уже диаграмма направленности. На наш взгляд это ошибка авторов, потому что выходит, что выгоднее мотать плотно. Вдобавок проволоки уйдет меньше. Показаны исключительно преимущества, на практике подобное выглядит сомнительно.
Из полезных свойств этого онлайн калькулятора хотелось бы отметить расчет минимального размера экрана. А насчет шага уточните в справочниках, чем и займемся. Кстати, любопытен факт, что по умолчанию на сайте сразу стоит частота WiFi 2,45 ГГц. Здесь сегодня спиральные антенны часто применяются.
Самодельная спиральная антенна
Нашли: усиление зависит только от числа витков. Шаг намотки рекомендуется выбирать 0,22 – 0,24 длины волны. На сайте это значение задаем в широких пределах. Предлагаем читателям выбрать шаг, варьируя число витков. Случается, что в отдельных калькуляторах встречаются ошибки, точной информацией владеет лишь веб-программист.
Кстати, в новом источнике сведения приведены, что экран размещается позади спирали на расстоянии 0,12 длины волны. При этом добавляется, что если диаметр экрана выбирается равным 0,8 длины волны и более, сторона квадрата еще больше: 1,1 λ. Ситуация не настолько очевидна, но представьте, что круг обязан вписаться внутрь – все встает на места.
Что касается согласования, сопротивление спиральной антенны сильно зависит от толщины проволоки и с ростом уменьшается. Возможно добиться цифры, равной 75 и даже 50 Ом. В данном случае согласования не требуется, что упрощает эксплуатацию. На высоких частотах это работает. К примеру, волновое сопротивление станет равным 75 Ом при толщине проволоки 5% длины волны. Получая 50 Ом, следует взять толщину проволоки 7% длины волны. Видите, что на частотах WiFi это реально, а значит, рассчитаем параметры так, избегая согласования.
Обратите внимание, в калькуляторе не дается возможности задать толщину провода, а с имеющимся волновое сопротивление равно 140 Ом. Вероятно, это профессиональная хитрость, по нашим сведениям кабель должен быть на 50 Ом на частотах WiFi. Зато легко проверить, выполняется ли зависимость от толщины провода. Приведем таблицу и сравним результат.
Итак, частота составляет 2450 МГц, находим длину волны по простой формуле:
λ = 299 792 458 / 2450 000 000 = 0,1223 метра.
Находим нужный диаметр провода для сопротивления 140 Ом:
0,1223 х 0,02 = 2,45 мм, проверим, совпадает ли это с онлайн калькулятором! Смотрим и видим: 2,4. Ну, если учесть, что без округления получилось 2,447 мм, то будем считать, что два источника повторяют друг друга, а значит указаниям по выбору шага намотки (см. выше) можно поверить. На этом считаем, что самодельная спиральная антенна готова, а также найдем толщину проволоки, при которой сопротивление станет равным 50 Ом: получается 8,5 мм. Причём на указанной высокой частоте сложно обеспечить требуемые условия. Посему целью самостоятельно сделать спиральную антенну чаще задаются компьютерщики.
Что касается нестыковок в калькуляторе, проверяйте читаемую в интернете техническую информацию несколько раз. Считаем, что ответили на вопрос, что такое спиральная антенна, и как сделать спиральную антенну. Плюс конструкции в простоте изготовления, если патчи нужно просчитывать, согласовывать, и не факт, что получится, здесь имеется неплохое устройство, удовлетворяющее заданным условиям, отсеивающее массу помех. С обеих сторон (на прием и передачу) стоят одинаковые антенны, чтобы работать с круговой поляризацией, в противном случае результат станет загадочно-непредсказуемым. Спиральная антенна, собранная самостоятельно – реальность.
ДМВ антенна своими руками
КВ антенна своими руками
Антенна Харченко своими руками
Цифровая антенна своими руками
Непонятно откуда взялось 0.02.
Если длина волны около 123 мм то 5% от этого будет примерно 6, а никак ни 2.
Источник
Спиральные антенны: виды и фото
Спиральная антенна принадлежит к классу антенн с бегущей волной. Ее основной диапазон работы — дециметровый и сантиметровый. Она относится к классу поверхностных антенн. Главным ее элементом является спираль, подключенная к коаксиальной линии. Спираль создает диаграмму направленности в виде двух лепестков, излучаемых вдоль ее оси в разные стороны.
Устройство антенны
Главной деталью антенны является свернутый в спираль проводник. Здесь применяется, как правило, медный, латунный или стальной провод. К нему подсоединен фидер. Он предназначен для передачи сигнала от спирали в сеть (приемник) и в обратном порядке (передатчик). Фидеры бывают открытого и закрытого типа. Фидеры открытого типа представляют собой неэкранированные волноводы. А закрытого типа имеют специальный экран от помех, что делает электромагнитное поле защищенным от внешнего воздействия. В зависимости от частоты сигнала, определяется следующая конструкция фидеров:
— до 3 МГц: экранированные и неэкранированные проводные сети;
— от 3 МГц до 3 ГГц: коаксиальные провода;
— от 3ГГц до 300 ГГц: металлические и диэлектрические волноводы;
— свыше 300 ГГц: квазиоптические линии.
Еще одним элементом антенны стал отражатель. Его предназчение – фокусирование сигнала на спираль. Он изготавливается в основном из алюминия. Основанием для антенны служит каркас с маленькой диэлектрической проницаемостью, например, пенопласт или пластик.
Расчет основных размеров антенны
Расчет спиральной антенны начинается с определения основных размеров винтовой линии. Ими являются:
— количество витков n;
— угол подъема витка a;
— диаметр спирали D;
— шаг витка спирали S;
— диаметр отражателя 2D.
Первое, что надо понять при проектировании спиральной антенны, – она является резонатором (усилителем) волны. Ее особенностью стало высокое входное сопротивление.
D=λ/π, где λ-длина волны, π=3,14
Т.к. λ величина, изменяющаяся и зависящая от частоты, то в расчетах берутся средние значения этого показателя, рассчитанного по формулам:
λ min= c/f max; λ max= c/f min, где с=3×10 8 м/сек. (скорость света) и f max, f min – максимальный и минимальный параметр частоты сигнала.
λ ср=1/2(λ min+ λ max)
n= L/S, где L – общая длина антенны, определяющаяся по формуле:
L= (61˚/Ω) 2 λ ср, где Ω – коэффициент направленного действия антенны, зависящий от поляризации (берется из справочников).
Классификация по рабочему диапазону
По основному диапазону частот, приемо-передающие устройства бывают:
1. Узкополосные. Ширина диаграммы направленности и входное сопротивление сильно зависят от частоты. Это говорит о том, что антенна может работать без перенастройки только в узком спектре длины волны, примерно 10% относительной полосы частот.
2. Широкодиапазонные. Такие антенны могут работать в большом спектре частоты. Но их основные параметры (КНД, диаграмма направленности и т. д.) все-таки зависят от изменения длины волны, но не так сильно, как у узкополосных.
3. Частотнонезависимые. Считается, что здесь основные параметры не меняются при изменении частоты. В таких антеннах имеется активная область. Она имеет возможность перемещаться вдоль антенны, не меняя своих геометрических размеров, в зависимости от изменения длины волны.
Чаще всего встречаются спиральные антенны второго и третьего типа. Первый тип применяется, когда необходима повышенная «четкость» сигнала на определенной частоте.
Самостоятельное изготовление антенны
Промышленность предлагает большой выбор антенн. Разнообразие цен может варьировать от несколько сотен до несколько тысяч рублей. Существуют антенны для телевидения, спутникового приема, телефонии. Но можно изготовить спиральную антенну и своими руками. Это не так сложно. Особой популярностью пользуются спиральные антенны для Wi-Fi.
Особенности антенны на 433 МГц
В первую очередь, надо сказать, что радиоволны с частотой 433 МГц при своем распространении хорошо поглощаются землей и различными препятствиями. Для ее ретрансляции используются передатчики малой мощности. Как правило, такую частоту применяют различные охранные устройства. Она специально используется в России, с целью не создавать помехи в эфире. Спиральная антенна на 433 МГц требует большего коэффициента выходного сигнала.
Самодельная антенна на 433 МГц
Спиральную антенну на 433 МГц своими руками изготовить просто. Она очень компактна. Для этого понадобится небольшой отрезок медного, латунного или стального провода. Можно применить и просто проволоку. Диаметр провода должен составлять 1 мм. Наматываем 17 витков на оправку диаметром 5 мм. Растягиваем винтовую линию, чтобы ее длина составила 30 мм. При этих размерах испытываем антенну на прием сигнала. Изменяя расстояние между витками, путем растяжения и сжатия спирали, добиваемся лучшего качества сигнала. Но надо знать, что такая антенна очень чувствительна к различным предметам, подносимым к ней близко.
Приемная антенна ДМВ
Спиральные антенны ДМВ необходимы для приема телевизионного сигнала. По своей конструкции они состоят из двух частей: отражатель и спираль.
— общая длина спирали L=30000/f, где f- частота сигнала (МГц);
— шаг спирали S= 0,24 L;
— диаметр витка D=0,31/L;
— диаметр провода спирали d ≈ 0,01L;
— диаметр отражателя 0,8 nS, где n- количество витков;
— расстояние до экрана H= 0,2 L.
Чашка отражателя изготавливается из алюминия.
Другие виды приемопередающей аппаратуры
Коническая и плоская спиральные антенны встречаются реже. Это связано с трудностью их изготовления, хотя они и имеют лучшие характеристики по диапазону передачи и приема сигнала. Излучение таких передатчиков формируется не всеми витками, а лишь теми, длина которых близка к длине волны.
Сравнение спиральных и узконаправленных антенн
Основное отличие спиральной антенны от направленной заключается в том, что она меньше размером. Это делает ее более легкой, что позволяет производить монтаж с меньшими физическими усилиями. Ее недостатком является более узкий диапазон частот приема и передачи. Также она имеет более узкую диаграмму направленности, что требует «поиска» лучшего положения в пространстве для удовлетворительного приема. Несомненное ее преимущество – простота конструкции. Большим плюсом является возможность настраивать антенну при помощи изменения шага витка и общей длины спирали.
Укороченная антенна
Для лучшего резонанса в антенне нужно, чтобы «вытянутая» длина спиральной части как можно ближе была к значению длины волны. Но она не должна быть меньше ¼ длины волны (λ). Таким образом, λ может доходить до 11 м. Это актуально для КВ-диапазона. В этом случае антенна будет слишком длинной, что неприемлемо. Одним из способов увеличить длину проводника является установка удлиняющей катушки у основания приемника. Еще один вариант — запитывание в цепь тракта тюнера. Его задача – согласование выходного сигнала передатчика радиостанций, с антенной на всех рабочих частотах. Если говорить понятным языком, то тюнер выступает в роли усилителя входящего сигнала с приемника. Такая схема применяется в автомобильных антеннах, где очень важен размер элемента, принимающего радиоволну.
Заключение
Спиральные антенны получили большую популярность во многих областях радиоэлектронных коммуникаций. Благодаря им осуществляется сотовая связь. Также их применяют в телевидении и даже в дальней космической радиосвязи. Одной из перспективных разработок по уменьшению габаритов антенны стало применение конусного рефлектора, позволяющего увеличить длину принимающей волны, по сравнению с обычным отражателем. Однако есть и недостаток, выраженный в уменьшении спектра рабочей частоты. Также интересным образцом является «двухзаходная» коническая спиральная антенна, позволяющая работать в широком спектре частот, благодаря формированию изотропной диафрагмы направленности. Это происходит потому, что линия питания в виде двухпроводного кабеля обеспечивает плавное изменение волнового сопротивления.
Источник