- Устройство и схема плавного пуска асинхронного электродвигателя
- Необходимость плавного запуска
- Прямой запуск
- Подключение «звезда-треугольник»
- Старт через автотрансформатор
- Устройства плавного пуска
- Типы устройств плавного старта
- Софт-стартеры
- Плавный пуск электродвигателя своими руками
- Зачем нужны УПП?
- Как плавно запустить двигатель?
- Регулятор оборотов коллекторного двигателя
- Заключение
- Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками
- Функции прибора
- Следует определить, что УПП в большинстве случаев реализует функции:
- Варианты схем включения УПП в систему питания и управления электродвигателем
- Схема включения, исключающая потерю мощности
- Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя
- Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1
- Плавный пуск электродвигателя
- Чем опасен пусковой ток электродвигателя
- Методы снижения пусковых токов
- Электродвигатели с фазным ротором
- Переключение схемы соединения обмоток статора
- Частотные преобразователи
- Устройства плавного пуска
- Плавный пуск для болгарки своими руками – экономия ваших средств и защита электроинструмента
- Как изготовить схему плавного пуска угловой шлифовальной машины своими руками
- Устройство плавного пуска электродвигателя :
- Необходимость плавного пуска электродвигателей
- Запуск электродвигателя переключением обмоток
- Частотное регулирование скорости вращения
- Принцип действия УПП
- Виды УПП
- Выбор УПП
- Выбор УПП
- Упп для насосов
- Плавный запуск электроинструментов
Устройство и схема плавного пуска асинхронного электродвигателя
Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.
Необходимость плавного запуска
Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.
Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.
Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.
Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.
Прямой запуск
В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.
На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.
Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.
Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.
По этой причине производители крупных электродвигателей запрещают их прямой пуск.
Подключение «звезда-треугольник»
Одним из основных способов запуска машины является электросхема «звезда-треугольник». Такой старт возможен, для двигателей, у которых все начала и концы обмоток выведены.
Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.
Первоначально коммутация с сетью происходит по схеме «звезда». Контакторы К1 и К3 замкнуты. Затем, через определенное время, обмотки переключаются автоматически на схему «треугольник». Контакты К3 размыкаются, а контакты К2, наоборот, замыкаются. Реле времени в электросхеме служит для управления их переключением. На нем выставляется время разгона двигателя. При этом пусковые токи существенно снижаются.
Такой способ эффективен, но применяется он не всегда.
Старт через автотрансформатор
Этот способ применяется с использованием в электросхеме автотрансформатора, который соединен с машиной последовательно. Он служит для того, чтобы запуск произошел при пониженном на 50 — 80% от номинального напряжении. Вследствие этого пусковой ток и вращающий пусковой момент уменьшатся. Временной интервал переключения от пониженного напряжения к полному корректируется.
Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.
Устройства плавного пуска
В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.
В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.
Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.
Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.
Типы устройств плавного старта
Их можно разделить на четыре категории.
- Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
- Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
- Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
- Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.
Софт-стартеры
Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.
С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.
Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.
Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.
Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.
- Первое — это обязательный учет тока асинхронной машины. Поэтому выбор софт-стартера необходимо осуществлять учитывая полный ток нагрузки, не превышающий тока предельной нагрузки самого устройства,
- Второе — максимальное число стартов в час. Как правило, оно ограничено софт-стартером. Число запусков в час самой машины не должно превышать этот параметр,
- Третье — это напряжение самой электрической сети. Оно должно соответствовать паспортному значению устройства. Несоответствие может привести к его поломке.
Источник
Плавный пуск электродвигателя своими руками
Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.
В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.
Зачем нужны УПП?
Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.
Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.
Преимущественные особенности применения схемы с устройством плавного пуска (УПП):
- снижение стартового тока;
- уменьшение затрат на электроэнергию;
- повышение эффективности;
- сравнительно низкая стоимость;
- достижение максимальной скорости без ущерба для агрегата.
Как плавно запустить двигатель?
Существует пять основных методов плавного пуска.
- Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.
- С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.
- Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
- Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.
- Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.
Регулятор оборотов коллекторного двигателя
Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.
Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.
Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.
Заключение
УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.
Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.
Источник
Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками
Широкое использование асинхронных трехфазных двигателей в различных механизмах и оборудовании часто сталкивается с проблемой резкого пуска силовой установки, что во многих случаях влияет на долговечность эксплуатации или приводит к выходу из строя приводимых в действие элементов.
Кроме того, при резком запуске, пусковой ток электродвигателя в несколько раз превышает его рабочие показатели и тем самым влияет на срок эксплуатации не только электрического оборудования, но и сетей, к которым он подключен. Для устранения этого недостатка и негативных его последствий для оптимальной работы применяют устройство плавного пуска (УПП) электродвигателя.
Функции прибора
Аппаратура, которая осуществляет процесс плавного пуска также реализует и функцию торможения, что тоже немаловажно для лояльной работы многих агрегатов на основе электрических приводов.
Софтстартеры, так называют устройства плавного пуска, реализованы на базе симисторов, которые в отличие от других схем запуска электродвигателя обеспечивает поступательный бесступенчатый разгон двигателя, ограничивая пусковой ток.
Этот принцип не только оптимизирует пусковой момент, но выполняет функции управления и защиты, а кроме того дает вполне определяемый экономический эффект.
Следует определить, что УПП в большинстве случаев реализует функции:
- по ограничению пускового тока до 3 – 4,5 номинального значения,
- понижению напряжения питания при наличии соответствующего по мощности трансформатора и подводящих шин,
- оптимизации пускового и тормозного момента,
- аварийной защиты сети от токовых перегрузок,
- предотвращение заклинивания вала электродвигателя.
При этом необходимо понимать, что УПП не может производить регулировку частоты вращения, реверсировать направление вращения, увеличивать пусковой момент и снижать пусковой ток до значения ниже, чем требуется для старта вращения ротора.
Плавный пуск электродвигателя может быть реализован несколькими вариантами включения симисторов в цепи управления и разделяется на однофазные, двухфазные и трехфазные схемы включения, каждая из которых имеет функциональные отличия и стоимость исполнения соответственно. Кроме того, при использовании для питания двигателя соединения типа «треугольник» существует возможность включить симистор в разрыв обмотки.
Симистор, как известно, представляет собой включенных два встречно параллельных тиристора с управляющим входным каналом. В схеме УПП тиристоры исполняют роль быстродействующих контакторов, которые включаются напряжением, а выключаются током.
Однофазная схема регулирования (рис.
1) предполагает запуск электродвигателя мощностью не более 11 кВт в том случае, если требуется смягчить пусковой удар, а уже торможение, длительный запуск и ограничения на пусковой ток не имеют значения, так как при этом варианте реализовать такие функции нет возможности. Подобные УПП в последнее время сняты с производства как следствие значительного удешевления полупроводниковых приборов, в том числе и тиристоров.
Двухфазные УПП (рис. 2) применяются для регулирования пуска двигателей мощностью до 250 кВт. Такие устройства, хотя иногда и снабжают байпасными контакторами (by pass) с целью удешевления, но этим решением не устраняют недостаток, заключенный в несимметричности питания каждой фазы, что в итоге может привести к перегреву.
Самой совершенной схемой, осуществляющей не только мягкий пуск электродвигателя, но и обеспечивающей универсальное применение УПП, является трехфазное регулирование.
Мощность управляемых УПП двигателей ограничивается тепловой и электрической прочностью симисторов, а функциональность таких устройств позволяет реализовать множество решений.
в том числе динамическое торможение, подхват обратного хода и симметричность ограничений силы магнитного поля и тока.
Важной составляющей устройства плавного пуска является байпасный контактор, о котором упоминалось ранее, позволяющий создать наиболее комфортные условия, как для работы электродвигателей, так и для самого УПП.
Байпасный, или иначе ,обходной контактор (БК), предназначен для облегчения теплового режима системы плавного запуска для питания двигателя при выходе на установленные обороты.
Схематично включение БК выглядит, как указано на рисунке.
Варианты схем включения УПП в систему питания и управления электродвигателем
Стандартная схема включения устройства для плавного запуска электродвигателя предусматривает использование магнитного пускателя, теплового реле, быстродействующих предохранителей или автоматических выключателей, причем, последние должны иметь регулировку по токам перегрузки. Ниже на рисунках изображено принципиальное включение элементов УПП относительно обмоток электродвигателя по трех проводной и шести проводной схеме.
Схема включения, исключающая потерю мощности
В предложенной схеме используется шунтирующий пускатель, который обеспечивает работу двигателя после его выхода на установленное число оборотов и отключает устройство плавного пуска.
Важной характеристикой шунтирующего (байпасного) пускателя является то, что он в отличие от сетевого адаптера не должен проводить через себя пусковой ток и рассчитываются его параметры только по номинальной (установившейся) нагрузке.
Подобная схема включения УПП является единственно правильной при управлении параллельно несколькими двигателями, которые должны работать в синхронном режиме. Кроме того байпасная схема рекомендуется к применению для двигателей большой мощности.
Современные устройства плавного пуска выпускаются с возможностью сопряжения с программируемыми контролерами и компьютерными системами через совместимый интерфейс и могут включаться по требованию оператора или общей системы управления.
Кроме всех преимуществ, отмеченных выше, стоит отметить, что изменение характеристик пусковых токов несет экономическую выгоду, которая определяется сохранностью оборудования и питающих сетей и может быть просчитана в долгосрочном режиме.
Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя
Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.
Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного
увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.
Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети.
При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора.
Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.
Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности
(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.
При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах.
Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается.
На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.
На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.
В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном Читайте также: Бесколлекторный двигатель постоянного тока: особенности, преимущества и устройство прибора
Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП.
Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.
Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог.
1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“.
Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.
Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.
Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:
- HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
- HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
- HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.
Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.
Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.
На рисунке 6 приведён упрощённый алгоритм работы УПП.
После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех.
Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“.
После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.
Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1
Устройства плавного пуска электродвигателя
Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применении разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.
Пусковые токи достигают значений в 7-10 раз выше, чем в рабочем режиме.
Это привод к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя.
Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.
Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.
В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз.
Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов.
Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.
Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.
Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяют избежать гидравлического удара при выключении агрегата.
Устройства плавного пуска промышленного изготовления
Устройства плавного пуска в настоящее время выпускается многими фирмами, например, Siemens, Danfoss, Scheider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.
При всех достоинствах фирменных устройства обладают одним недостатком, — достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.
Устройство плавного пуска на микросхеме КР1182ПМ1
На основе микросхемы КР1182ПМ1 возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на Рис.1.
Рис.1. Схема устройства плавного пуска двигателя
Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.
В конструкции используется трехфазный электродвигатель 50 Гц, 350 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).
Выходные ключи выполнены на тиристорах, включенных встречно-параллельно. В конструкции применены импортные тиристоры типа 40ТРS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение – 1200 В.
Кроме них в ключах присутствуют еще несколько элементов.
Их назначение следующее: демпфирующие RC-цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8С11, R9С12, R10С13), а с помощью варисторов RU1- RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500В.
В качестве управляющих узлов для выходных ключей используются микросхемы DA1-DA3 типа КР1182ПМ1. Конденсаторы С5-С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.
Для питания реле К1-К3 в устройстве имеется блок питания, который состоит из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.
Описание работы устройства плавного пуска электродвигателей
Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.
Пуск устройства в работу
При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока.
Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя.
Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.
Отключение двигателя, плавное торможение
Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.
При пуске двигателя в нулевом проводе могут протекать значительные токи.
Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный.
В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.
Детали и конструкция
Для сборки устройства необходимы следующие детали:
Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.
В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.
Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.
Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.
Подключение двигателя
Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.
Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.
Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ– 8.
Проверка и наладка устройства
Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя.
Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством».
Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.
Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.
Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.
Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.
Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.
Что можно еще добавить в конструкцию
Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.
Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами.
Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.
Плавный пуск электродвигателя
Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.
Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.
Чем опасен пусковой ток электродвигателя
При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.
Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.
В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.
Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.
Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.
Методы снижения пусковых токов
Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.
Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:
- применения электродвигателей с фазным ротором;
- использование схемы для переключения обмоток со звезды на треугольник;
- использование устройств плавного пуска;
- использование частотных преобразователей.
Для каждого механизма подходит один или несколько указанных методов.
Электродвигатели с фазным ротором
Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.
Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.
Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.
Переключение схемы соединения обмоток статора
В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.
За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).
Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.
Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.
Частотные преобразователи
Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.
Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.
За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.
Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.
Устройства плавного пуска
Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.
Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.
При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.
А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.
Плавный пуск для болгарки своими руками – экономия ваших средств и защита электроинструмента
В связи с особенностями конструкции, старт угловой шлифовальной машины сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:
-
- Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.
-
- При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;
В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.
-
- Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;
В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.
-
- Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.
Поэтому наличие защитного кожуха обязательно.
ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.
Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.
Схематический чертеж расположение рабочих органов и систем управления в болгарке
Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.
Регулировка оборотов находится на рукоятке инструмента
Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов.
Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно.
Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.
Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.
Как изготовить схему плавного пуска угловой шлифовальной машины своими руками
Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.
Электрическая схема регулировки плавного пуска для болгарки
Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.
При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения.
По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора.
Симистор VS1, управляемый тиристорами, открывается с такой же паузой.
Посмотрите видео с подробным разъяснением как сделать и какую схему применить
В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.
Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.
После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.
Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.
Остальные детали схемы работают следующим образом:
- Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
- Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.
Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.
Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.
По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.
Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.
Устройство плавного пуска электродвигателя :
Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).
Необходимость плавного пуска электродвигателей
Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный.
Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %.
Поэтому необходим плавный пуск.
Запуск электродвигателя переключением обмоток
Обмотки статора могут соединяться «звездой» и «треугольником». Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы «звезда» и «треугольник».
Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.
Электродвигатель запускается по схеме «звезда», когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы «треугольник» контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.
Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме «треугольник» электродвигатель больше нагревается и жестко работает.
Частотное регулирование скорости вращения
Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.
В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.
Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.
В промежуточной цепи пульсации сглаживаются.
В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.
Все три элемента получают сигналы от электронной схемы управления.
Принцип действия УПП
Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя:
- постепенное увеличение нагрузки;
- снижение просадки напряжения;
- управление запуском и торможением в определенные моменты времени;
- снижение помех;
- защита от скачков напряжения, при пропадании фазы и др.;
- повышение надежности электропривода.
Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.
Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал.
Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные.
Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.
Недостатки УПП на симисторах:
- простые схемы применяются только с небольшими нагрузками или при холостом запуске;
- продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
- момент вращения вала снижается и двигатель может не запуститься.
Виды УПП
Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска.
Недостатком является отсутствие регулирования момента по нагрузке на двигатель.
Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.
Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.
Выбор УПП
Большинство УПП — это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.
Одно из самых простых — это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.
Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.
Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.
В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.
Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).
Выбор УПП
Основными параметрами, по которым выбираются устройства плавного пуска, являются:
- предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
- параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
- заданное напряжение устройства не должно быть меньше сетевого.
Упп для насосов
Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.
Плавный запуск электроинструментов
Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.
Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.
При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.
Устройство можно применять для любого электроинструмента.
Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.
Источник