Реле плавного старта вентилятора охлаждения автомобиля
В чем минусы быстрого старта:
1. Большая нагрузка на бортовую сеть (генератор, аккумулятор, проводка).
2. Большая механическая нагрузка на подшипник и на крепления электро вентилятора.
3. Использование необоснованно большого предохранителя. Пусковой ток электродвигателя 20 — 30А в зависимости от модели, и редко превышает 4 — 8А на ходу.
По этому решено было собрать некий «софт-старт».
Задача, поставленная мной, состояла в следующем:
1. Использовать штатную проводку
2. Не ставить дополнительных кнопок.
3. Изначально, в данной модели автомобиля не было реле включение вентилятора, по этому есть возможность это исправить.
Устройство представляет собой ШИМ генератор импульсов. ШИМ запускается и начинает генерировать импульсы на выходе 3 с постоянной частотой и изменяющийся во времени шириной следования импульса. Время задается емкостью конденсатора С3. Далее, эти импульсы подаются на драйвер мощного полевого транзистора который управляет нагрузкой на выходе устройства. Драйвер для IRF4905 собран на отечественном транзисторе КТ315. Время полного открытия затвора IRF4905 напрямую зависит от емкости конденсатора и скорости его заряда. Диод на выходе служит для сглаживание обратных выбросов электродвигателя. В качестве диода я применял диодную сборку Шоттки с общим катодом. Полевик Р-канальный, так как должен регулировать положительное напряжение. Можно было бы использовать и N-канальный, но тогда бы пришлось переделывать всю проводку связанную с электроникой охлаждения. Все выводы на схемы указаны с учетом выходов контактов реле. Схема простая и выполнена в SMD, поэтому удалось ее поместить на плате размером с автомобильное реле. Некоторая часть схемы выполнена навесным, плотным монтажом, а другая на маленькой печатной плате.
Плату я рисовал ЛУТом, всем известным, далее травил хлорным железом. На этом сайте я много встречал людей у которых процесс травление занимает более 2-х часом, лично у меня это занимает 5-7 минут. Дело в том, что бы протравить плату (не важно какого размера) нужно подогреть раствор до температуры 60-70 градусов,при этом нужно как можно чаще болтать текстолит в растворе, и периодически на него поглядывать.
Первым делом необходимо достать реле. Оно может быть рабочим так и нет, собственно нас это не интересует. Главное размер! Теперь нужно разобрать его и аккуратно извлечь внутренности, оставив выходные клеммы.
Должно получиться примерно так.
После того как мы отрезали все ненужное, займемся навесным монтажом. Навесная часть, будет вся правая часть схема, все что выходит с 3 ножки NE555. «Почему нельзя спаять все на плате?» Да потому что, ни по длине ни по ширине оно не влезет. Это относиться только к стандартному (по размерам) реле.
Навесная часть почти завершена. Теперь приступим к самой плате. У меня получилось так, что пришлось обрезать готовую плату до нужных размеров, потому как транзистор и диоды были вынесены за пределы платы. Сама плата, которая выложена в конце статьи, имеет полный размер в связи с тем, что бы ее можно было подогнать по размерам.
Теперь впаиваем обрезанную плату в реле.
Осталось допаять перемычки и можно переходить к креплению радиатора (через изоляционную прокладку) и обрезанию крышки реле.
Собственно устройство готово. Осталось покрыть его лаком или залить канифолью. Хотя если реле будет стоять под приборной панелью, то вскрытие лаком можно исключить. После окончательной сборки устройство не требует настройки, подходит к любым (по мощности) электродвигателям, так как имеет максимальный ток в 74А! Это все таки автомобиль, должен быть 200% запас по мощности. Чтобы ничего не работало в пике своих характеристик. IRF4905 довольно дешевый, распространенный, проблем с его приобретением возникнуть не должно.
Ну вот и все. Фото готового устройства.
Работоспособность в автомобиле показаны на видео.
Источник
Плавный пуск вентилятора охлаждения
Наконец-то появилась свободная минутка и я решил сделать очередное устройство для своего авто) Добрался я в этот раз до вентилятора системы охлаждения двигателя. В штатном варианте, когда включается ВСОД, происходит просадка напряжения бортовой сети. Когда я поставил сделанное устройство у меня получилось плавное нарастание тока в обмотке двигателя при его включении, исключив резкий скачок тока, а также провалов и резкой просадки напряжения бортовой сети 🙂
Работа устройства:
При подаче напряжения 12в таймер с элементами обвязки (ШИМ) запускается и начинает генерировать импульсы на выходе 3 ИС с постоянной частотой и изменяющийся во времени шириной следования импульса. Время задается емкостью конденсатора С1. Далее, эти импульсы подаются на затвор мощного полевого транзистора который управляет нагрузкой на выходе устройства. R3 строго 2Мом.
P.S. Данное устройство размещается максимально близко к вентилятору иначе могут образоваться помехи, которые будут мешать нормальной работе автомобиля.
Устройство ставил уже на несколько автомобилей, работает безупречно и безотказно. После сборки никакие дополнительные настройки не нужны, если всё сделано правильно, начинает работать сразу………………………
Источник
Схема плавного включения фар и вентилятора охлаждения
До чего любят люди усложнять некоторые вещи .
Я спаял несколько схем плавного включения фар и вентилятора охлаждения. Долгое время схемы тестировались на трёх автомобилях. На один автомобиль установил три схемы: по схеме на каждую лампу H7 ближнего света и одну на вентилятор охлаждения. Схемы выдержали испытания годами и теперь я уверен в их надёжности. Хотел бы я верить в эти слова и в эти распрекрасные схемы, если бы не желание разобраться и понять что зачем и почему.
Обилие деталей в современных схемах отнюдь не делает их надежнее
Схемы с применением микросхем и мощных полевых транзисторов с непростым обвесом, подвергаясь воздействию внешней среды и тряски во время движения автомобилей так и норовят выйти из строя благодаря обилию соединений , да и самих деталей.
Кроме того, даже упрощенные схемы содержащие полевые транзисторы никак не способствуют их нормальной работе по тепловому режиму, в зимнее время при резком скачке тока через транзистор его корпус часто просто лопается от перепада температур.
И, хотя «К платам припаиваются провода нужной длины, на концах которых можно установить различные разъёмы для подключения ламп или вентиляторов. Саму плату можно покрыть лаком или герметиком для защиты от влаги.» это не спасает от переохлаждения и от перегрева.
Многие электронные приборы даже сделанные на производствах по схемам предусматривающим использование обычных радиодеталей , выходят из строя благодаря тому, что сами транзисторы и микросхемы не были рассчитаны на эксплуатацию вне комнатных условий.
Если все так плохо, то есть ли выход из сложившейся ситуации ?
Разумеется есть и он давно применяется в автомобилях как забугорного так и местного производства
Вот некоторые лаконичные и простые решения лишенные вышеперечисленных недостатков
Имея доступ к емким конденсаторам, которые стоят куда меньше чем микросхемы и полевые транзисторы, можно собрать и более упрощенную схему плавного запуска мощных нагрузок
Источник