- Простой FM-приемник своими руками
- Простой FM-приемник на двух транзисторах и одной микросхеме.
- Частотные диапазоны FM
- Список компонентов
- Описание схемы FM приемника
- FM приемник принципиальная электрическая схема
- Антенна
- Все необходимое для самостоятельной сборки Web-радиоприемника
- Секреты SI473X. Делаем приемник и ищем скрытые возможности микросхемы SDR
- Содержание статьи
- Как радиоприемники стали ширпотребом
- Почему SI4734
- Схемотехника
- Прошивка
- Инициализация
Простой FM-приемник своими руками
Простой FM-приемник на двух транзисторах и одной микросхеме.
Что такое FM-приемник? Радиоприемник — это электронное устройство, которое принимает радиоволны и преобразует информацию, переносимую ими, в полезную для восприятия человеком. Приемник использует электронные фильтры, чтобы отделить нужный сигнал радиочастоты от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки, и, наконец, восстанавливает нужной информации посредством демодуляции.
Из радиоволн, FM является наиболее популярным. Частотная модуляция широко используется для FM-радиовещания. Преимущество частотной модуляции заключается в том, что она имеет большее отношение сигнал/шум и, следовательно, излучает радиочастотные помехи лучше, чем сигнал амплитудной модуляции равной мощности (AM). Звук из радиоприёмника мы слышим чище и насыщенней.
Частотные диапазоны FM
УКВ (УльтраКороткоВолновый) диапазон с ЧМ (Частотная Модуляция) по английски FM (Frequency Modulation) имеет длину от 10 м до 0,1 мм — это соответствует частотам от 30 МГц до 3000 ГГц.
Для приема вещательных радиостанций актуален сравнительно небольшой участок:
УКВ 64 — 75 МГц. Это наш советский диапазон. На нем много УКВ станций, но только в нашей стране.
Японский диапазон от 76 до 90МГц. В этом диапазоне ведется вещание в стране восходящего солнца.
FM — 88 — 108МГц. — это западный вариант. Большинство ныне продаваемых приемников обязательно работает именно в этом диапазоне. Часто сейчас приёмники принимают и наш совковый диапазон, и западный.
УКВ радиопередатчик имеет широкий канал — 200 кГц. Максимальная звуковая частота, передаваемая в FM, составляет 15 кГц по сравнению с 4,5 кГц в AM. Это позволяет передавать намного более широкий диапазон частот. Таким образом качество передачи FM значительно выше, чем АМ.
Теперь о приёмнике. Ниже представлена схема электроники для приемника FM вместе с его описанием работы.
Список компонентов
- Микросхема: LM386
- Транзисторы: T1 BF494, T2 BF495 (КТ315)
- Катушка L содержит 4 витка, Ф=0,7мм на оправке 4 мм.
- Конденсаторы: C1 220nF
- C2 2,2 нф
- C 100 нф х 2 шт
- C4,5 10 мкф (25 V)
- C7 47 нФ
- C8 220 мкф (25 В)
- C9 100 мкф (25 V) х 2 шт
- Сопротивления:
- R 10 кОм х 2 шт
- R3 1 кОм
- R4 10 Ом
- Переменное сопротивление 22кОм
- Переменная емкость 22пф
- Динамик 8 Ом
- Выключатель
- Антенна
- Батарея 6-9В
Описание схемы FM приемника
Ниже, представлена схема простого FM-приемника. Минимум компонентов для приема местной FM станции.
Транзисторы (Т1,2), вместе с резистором 10к (R1), катушкой L, переменным конденсатором (VC)22pF составляют ВЧ генератор (Colpitts oscillator).
Резонансная частота этого генератора устанавливается триммером VC на частоту передающей станции, которую мы хотим принять. То есть, он должен быть настроен между 88 и 108 МГц FM диапазона.
Информационный сигнал, снимаемый с коллектора Т2 поступает на усилитель НЧ на LM386 через разделительный конденсатор (С1) 220nF и регулятор громкости VR на 22 кОма.
FM приемник принципиальная электрическая схема
Принципиальная электрическая схема FM приемника
Перестройка на другую станцию осуществляется изменением ёмкости переменного конденсатора 22 пФ. Если Вы используете какой-либо другой конденсатор, который имеет большую ёмкость, то попробуйте уменьшить количество витков катушки L чтобы настроиться на диапазон FM (88-108 МГц).
Катушка L имеет 4 витка эмалированного медного провода, диаметром 0,7 мм. Катушка наматывается на оправке диаметром 4 мм. Её можно намотать на любом цилиндрическом предмете (карандаш или ручка с диаметром 4 мм).
Если Вы хотите принимать сигнал станций УКВ диапазона (64-75 МГц), то нужно намотать 6 витков катушки или увеличить ёмкость переменного конденсатора.
Когда необходимое количество витков намотаете, катушка снимается с цилиндра и немного растягивается так, чтобы витки не касались друг друга.
Микросхема LM386 представляет собой НЧ аудио усилитель мощности. Он обеспечивает от 1 до 2 Вт, чего достаточно для любого малогабаритного динамика.
Антенна
Антенна используется, чтобы поймать высокочастотную волну. В качестве антенны Вы можете использовать телескопическую антенну любого неиспользуемого устройства. Хороший прием можно также получить с куска изолированной медной проволоки длинной около 80 см. Оптимальную длину медной проволоки можно найти экспериментально.
Приемник можно запитать от батареи 6 — 9V.
К данному УНЧ на микросхеме LM386 можно также собрать похожие схемы FM приемников:
При питании 9 В нужно увеличить сопротивление R3 до 1,5-2,0 кОм.
Источник
Все необходимое для самостоятельной сборки Web-радиоприемника
Вы могли слышать про популярные радиоприемники, которые получают сигнал трансляций из интернета. Для работы подобного устройства не нужна радиотрансляционная вышка — только домашний Wi-Fi. Умельцы стилизуют свои самодельные Web-радиоприемники под олд-скульную и винтажную технику. А готовые устройства стоят весьма не скромно. В этой статье расскажу, как самостоятельно собрать интернет-радио с минимальными затратами.
Для сборки вам потребуется:
1. Источник питания (от 5 до 24 В). Пойдут старые блоки питания от гаджетов, ноутбуков и так далее. Возможно потребуется отдельный преобразователь для контроллера (для понижения с 24 до 5 В).
2. Корпус. Можно использовать старые корпуса от гаджетов, старой аудио-видео техники. Хороший вариант — встроить контроллер в активные компьютерные колонки — приличный вид плюс усилитель, динамики и источник питания. Можно сделать корпус с нуля — из пластика, ДСП, картона и т.п. Основная проблема будет — сделать аккуратную переднюю панель.
3. Контроллер для интернет радио. Это модуль с Wi-Fi и открытой прошивкой. Можно использовать роутер с Open-WRT, можно отдельный контроллер на ESP32/8266. Желательно брать сразу с дисплеем, так как будет компактнее и проще готовое изделие.
4. Аудиомодуль и аудиоусилитель. Если контроллер не имеет встроенной микросхемы для вывода звука, то лучше приобрести отдельный ЦАП с интерфейсом I2S. Потребуется также и усилитель звука для вывода на мощные колонки.
5. Динамики или колонки. Самый простой вариант — колонки от портативной акустики, это компактные и широкополосные варианты на 2″ или 3″.
6. Прямые руки для того, чтобы собрать все вместе, спаять, залить прошивку, IP адреса вещания, а также придать приличный внешний вид готовому устройству.
Контроллеров несколько, на выбор. Самый простой вариант (Kit8) стоит около $4.9, вариант с дисплеем побольше (T-Display) около $10, но обратите также внимание на функциональные варианты, например, T-Audio со встроенным ЦАП-ом.
Это, наверное, самый простой вариант (Wi-Fi Web Kit8) — модуль на базе NodeMCU/ESP-8266 со встроенным дисплеем и USB интерфейсом. Подходит не только для проектов интернет-радио, но и для самодельных RC-моделей, для умного дома, IoT и так далее. Модуль предусматривает несколько дискретных входов-выходов, а также аналоговый (А0).
Неплохой вариант — контроллеры от TTGO. Этот вариант чут-чуть подороже, но и экран побольше. Модуль может быть интереснее, как управляющий модуль для интернет радио. На экране можно выбирать нужную «радио-волну», а кнопками подтверждать выбор. Аналогично предыдущей плате, модуль имеет интерфейс USB.
Достаточно дорогой, но популярный модуль TTGO T5s. Версия платы V2.1, остнован на ESP32 и огромном 2,7″ дисплее Е-ink (E-Paper). Модуль имеет встроенный микрофон, ЦАП МAX98357A, ридер SD карты, bluetooth. Это одно из готовых решений для интернет-радио.
Самый фукциональный модуль от TTGO, заточенный под воспроизведение аудио. Это T-Audio (альтернативное название WROVER ESP32). Имеет интересную круглую форму платы под портативные колонки — как раз вариант под самодельный корпус из водопроводной трубы. На плате расположен ридер SD карт, bluetooth, WI-FI, ЦАП WM8978, светодиод WS2812B RGB и акселерометр MPU9250.
Последние два модуля имеют встроенный ЦАП, а для остальных следует приобрести отдельный шилд с микросхемой для вывода звука (I2S DAC). Эти шилды заточен под вывод звука с контролера через интерфейс I2S (стандартный). Из цифрового потока в аудио преобразование выполняет специальный ЦАП PCM5102.
В первом лоте есть в комплекте передняя панель, останется найти только коробку. По качеству неплохие и громкие (широкополосные). Вторые динамики совсем дешевые ($2), но пойдут для пробы.
Недорогой усилитель PAM8610 с двумя выходами по 2х10 Вт — пригодится для усиления звука на динамики. Это самые популярный и недорогой усилитель сигнала класса D. Подключение проблем не вызывает — правый/левый каналы, питание, динамики.
Недорогой усилитель PAM8610 с двумя выходами по 2х10 Вт с регулировкой звука. Такой же, как и предыдущий, недорогой, но с распаянным фильтром и коннекторами для удобства. Я рекомендую именно такой, особенно если есть возможность расположить все в корпусе.
Корпус можно собрать из подручных материалов — взять старую коробку из-под устройств, компьютерные колонки, старые DVD плееры или радиоприемники.
Все указанные модули прошиваются из Arduino. Прошивки открытые.
Если честно, то это одни из лучших проектов для самостоятельно сборки. Очень полезное применение недорогих комплектующих, паяльника и своего времени. Если вы пытаетесь увлечь сына программированию, то это простой и наглядный способ рассказать что и как. Если вы подбираете проект для школы или института, то тоже рекомендую обратить внимание, так как подобные проекты в последнее время наиболее актуальны.
Источник
Секреты SI473X. Делаем приемник и ищем скрытые возможности микросхемы SDR
Содержание статьи
Как радиоприемники стали ширпотребом
Прогресс не стоит на месте: в течение предыдущего столетия стоимость радиоприемников снижалась, при этом их характеристики становились все лучше. Так, в 20-е годы XX века основной вклад в стоимость вносили радиолампы — вспомни хотя бы первый супергетеродин Армстронга, который мы уже упоминали, говоря об истории супергетеродина.
На момент своего появления он казался совершенно безумным, так как содержал восемь ламп — огромное количество для того времени. А ведь ему нужны были еще батарейки общим размером с небольшой чемодан!
В 1930-х подобный приемник уже был вполне реален и даже производился серийно, а кроме того, появились лампы косвенного накала, которые можно было запитать от сети. Да и цены стали не такие заоблачные. В итоге приемник стоил примерно как сейчас айфон, и его уже можно было поставить на стол, не рискуя сломать последний.
Следующий этап удешевления и миниатюризации проходил достаточно медленно, лампы дешевели и уменьшались в размерах, совершенствовалась схемотехника. Продолжалось это вплоть до 1960-х годов. А прорыв случился в начале пятидесятых, когда появились первые серийные транзисторы и на них построили первый серийный приемник Regency TR-1.
По характеристикам он уступал ламповым того времени и стоил заметно дороже, но его уже можно было положить в карман. А дальше транзисторы потихоньку дешевели, их параметры улучшались, а вместе с ними становились меньше и экономичнее приемники. Появились интегральные схемы, и где‑то к 1970-м годам количество транзисторов в устройстве перестало существенно влиять на цену. Все больший вклад в размер и цену стали вносить контуры промежуточной частоты и входные перестраиваемые цепи.
Очередной рывок произошел в начале восьмидесятых, когда инженерам фирмы Philips удалось уместить весь радиочастотный тракт в одну микросхему. А кроме того, за счет схемотехнических ухищрений избавиться от всех контуров, кроме гетеродинного. Микросхема получила название TDA7000, а прототип приемника, представленный в рекламных целях, выглядел довольно‑таки необычно.
Прототип приемника на TDA7000
Штука получилась на редкость удачная, поэтому вскоре появились TDA7021 (PDF) с поддержкой стереокодирования и TDA7088 (PDF), где добавилась возможность автопоиска станций. В последней микросхеме использовалась небольшая цифровая часть, которая за этот самый поиск отвечала. Впрочем, там все было устроено достаточно примитивно, но продержалась такая конструкция достаточно долго. Это именно те приемники, которые встраивали чуть ли не в зажигалки в начале 2000-х.
Российские разработчики хоть и отставали, но переняли опыт, в результате чего появилась знаменитые К174ХА34 (TDA7021), К174ХА42 (TDA7000) и очень забавная гибридная схема СХА058.
СХА058
А вот на создание аналога TDA7088 ресурсов у отечественного производителя уже не хватило, или, скорее, стало не до того. В любом случае, сейчас все эти чипы считаются устаревшими и не производятся, за исключением клонов TDA7088, но и ему, видать, недолго осталось.
Сегодня наступила эра SDR/DSP-приемников, в которых основная обработка сигнала выполняется математически на оцифрованных данных, мы это уже обсуждали, когда собирали ZetaSDR. Но там обработка оцифрованного сигнала происходила на ПК. А можно ли обойтись без компьютера? Да легко: в 2001 году Philips выпустила чип TEA5767 (PDF), представляющий собой однокристальный цифровой приемник. Этот чип требовал минимум обвязки, имел цифровое управление и позиционировался (PDF) как удобный вариант для встраивания в различные гаджеты типа MP3-плееров и мобильных телефонов. Среди его достоинств — кварцевая стабилизация частоты и возможность декодировать стерео.
TEA5767 с полной обвязкой
Чуть позже появился более совершенный чип RDA5807. Он избавился от последнего колебательного контура в обвязке. Собственно, там и обвязки‑то не осталось, при этом принимаемый диапазон был заметно расширен (64–108 МГц), появилась поддержка RDS. Чувствительность стала повыше, качество звука тоже, и, что самое удивительное, эта кроха способна тянуть 32-омные наушники без дополнительного усилителя. И все это меньше чем за десять рублей! А сверх того, чип имеет обратную совместимость с RDA5807, да и вообще способен работать без управляющего микроконтроллера. Но с контроллером все же веселее.
RDA5807 с обвязкой
Но даже все перечисленное не предел: в чип можно запихнуть еще и ДВ/СВ/КВ‑приемник, как это сделано в KT0915 (PDF), AKC6951 (PDF) (тут еще и первые несколько каналов TV принимать можно) и SI473Х, о которых мы и будем говорить дальше.
Мы создадим современный радиоприемник, подобный современным коммерческим образцам, таким как PL330 и ETON SATELLIT. Но наше изделие будет при этом максимально простым и эффективным.
PL330
ETON SATELLIT
Почему SI4734
SI4735 отличается от других упомянутых чипов тем, что поддерживает патчи прошивки, а это открывает доступ к дополнительным функциям. Так, в сети есть патч, который позволяет принимать сигналы с SSB-модуляцией. Что в ней такого, спросишь ты? Да в общем, ничего особенного, просто на ней работают любители в КВ‑диапазонах, и их порой интересно послушать. И это, наверное, самый простой вариант такого приемника.
Хорошо, с SI4735 разобрались, а почему в заголовке значится SI4734? Дело в том, что все микросхемы SI473X совместимы «pin в pin» и отличаются только набором функций. Младшие модели (SI4730, SI4731) поддерживают длинные волны и FM, а старшие модели (SI4732, SI4735) поддерживают еще и короткие волны и RDS. SI4734 поддерживает КВ, но не умеет RDS. Кроме всего прочего, они здорово различаются по цене: SI4730 стоит примерно 100 рублей, SI4734 — 150, SI4735 — порядка 500 рублей. Правда, всего год назад они были минимум в три раза дешевле, ну да это известная сейчас проблема.
Патч официально поддерживает только SI4735, на ней я и хотел экспериментировать. Но купленный мною экземпляр оказался нерабочим, поэтому я поставил SI4734-D60, который имелся в загашнике. А заодно попробовал скормить этому чипу патч, и, к моему удивлению, он сработал. Так что, если тебе не нужен RDS, можно сэкономить.
Обрадовавшись такому успеху, я попробовал поковырять SI4730-D60, тем более что в сети проскальзывала информация, будто некоторые из этих чипов могут работать на КВ. Однако у меня они не заработали и патч на них тоже не встал. Очень вероятно, что патч сработает и на SI4732, поскольку китайцы часто добавляют эту микросхему в наборы своих приемников и заявляют о поддержке SSB.
Схемотехника
Для наших экспериментов мы соберем относительно несложную конструкцию, состоящую из двух блоков: блока управления и блока приемника. Блок управления соберем на STM32F030, добавим к нему энкодер, дисплей OLED и восемь кнопок. От кнопок можно вовсе отказаться, но с ними управлять приемником намного удобнее. За клавиатуру будет отвечать PCF8574, очень удобная микросхема — расширитель портов с I2C-интерфейсом. Введение расширителя портов хоть и усложняет схему, но упрощает разводку платы и опрос кнопок. Питать все это дело удобно с помощью LiPO-аккумулятора, поэтому добавим туда еще контроллер заряда и DC/DC-преобразователь на RT9136 для питания контроллера. Использование активного преобразователя целесообразно в плане повышения КПД.
Схема приемника
Выходной мощности SI4735 недостаточно для раскачки стандартных 32-омных наушников, поэтому нужен аудиоусилитель, даже два, так как у нас стерео. В качестве усилителя использована микросхема TDA2822 (PDF) в стандартном включении. Это не лучший вариант по двум причинам: во‑первых, у нее слишком высок коэффициент усиления, а во‑вторых, на мой вкус, она слишком шумит. Лучше на эту роль подойдет LM4863 (PDF), но у меня ее не оказалось под рукой. Тем не менее TDA2822 недурно справляется со своей задачей.
В заводских решениях обычно используется УВЧ и магнитная антенна, мы же поступим проще: поставим на вход фильтр 5-го порядка с частотой среза и будем использовать полноразмерную антенну — все равно на штырь в квартире можно ловить только помехи, FM и пару китайских станций в хороший день. Что же касается FM-входа, то ему комфортно и без входных цепей. Кроме того, саму SI4734 вместе со входными цепями мы поместим в экран из жести (плата двухсторонняя, вторая сторона — сплошная медь), благо это совсем не сложно. Использование внешней полноразмерной антенны сильно снизит наводки от цифровой части и избавит от УВЧ.
Что касается этой самой цифровой части, то тут каких‑либо особенностей нет. Схема, платы и прочее лежат на GitHub. Вешать постоянно обновляющийся дисплей и клавиатуру на одну шину с SI4734 — не очень хорошая идея из‑за возможных помех, однако остановка контроллера и выключение дисплея на слух не вносит изменений. Отсюда можно сделать вывод, что в городе гораздо больший вклад в качество приема вносит зашумленность эфира.
Оформлено это в достаточно минималистичном стиле, впрочем, корпуса я делать никогда не любил. У меня получилось что‑то среднее между макетом и законченным устройством, но транспортировку и полевое использование приемник пережил не поморщившись.
Предвидя вопросы, скажу сразу, что управляющий блок можно собрать и на Blue Pill, и на ARDUINO, в последнем случае на Али можно купить уже собранную плату. Обойдется это примерно в 3000 рублей. А за дополнительные деньги к этому делу можно докупить корпус. Но это не наш метод, мы же собрались поковыряться с SI4734!
Прошивка
В сети достаточно руководств по сборке приемников на SI4735, однако большинство авторов делают акцент на схемотехнику и сборку на макете, после чего туда заливают один из вариантов готовой прошивки. Мы же попробуем разобраться, как написать такую прошивку самостоятельно почти с нуля, поэтому все нижесказанное достаточно легко перенести на любой другой микроконтроллер, лишь бы у него хватало памяти для хранения патча.
Итак, что же за зверь SI4734 и с чем его едят? Этот чип управляется по шине I2C, и каждая посылка представляет собой адрес микросхемы (с битом переключения запись/чтение), 1 байт команды и до 7 байт аргументов. У каждой команды свое количество аргументов, впрочем, даташит говорит, что посылки можно сделать и фиксированной длины, если вместо неиспользуемых аргументов слать 0x00 . Для наших целей понадобится не так много команд, поэтому мы можем позволить себе написать для каждой свою функцию. Результатом выполнения команды можно считать ответ, состоящий из байта статуса и до 7 байт собственно ответа, причем и здесь допускается унификация длины: можно читать по 8 байт, все неиспользуемые будут 0x00 .
Но тут есть нюанс: команда выполняется не мгновенно, а с задержкой, до истечения которой микросхема будет отвечать только нулями. Поэтому, когда нам необходим ответ, мы с некоторой периодичностью будем его считывать, пока первый байт ответа не будет равен 0x80 , что свидетельствует о завершении исполнения команды. Следом можно считать байты ответа и/или отправлять следующую команду.
Для отправки и чтения пакетов по I2C мы будем использовать уже известную нам команду библиотеки LibopenCM3 i2c_transfer7( SI4734I2C, SI4734ADR . ) , где SI4734I2C — используемая шина I2C (I2C1), а SI4734ADR — семибитный адрес SI4734 0x11 . О бите записи/чтения за нас позаботится библиотека. В итоге работа с микросхемой вкратце будет представлять собой следующую последовательность действий: инициализация, настройка режима работы, настройка на нужную частоту. Все описанное ниже опирается на содержание документов AN332 «Si47XX Programming Guide» и AN332SSB.
Инициализация
Прежде всего SI4734 нужно инициализировать. Сделать это можно в одном из трех режимов: AM, FM или SSB. Перед началом инициализации документация рекомендует выполнить сброс. Делается это тривиально: надо ненадолго подтянуть к земле REST-пин SI4734. Для задержки используется совершенно ленивая функция, благо точность тут не имеет особого значения.
Источник