Питание для ноутбука от прикуривателя своими руками
Автомобильный преобразователь для питания ноутбука
Автор: Max
Опубликовано 07.03.2017
Создано при помощи КотоРед.
Конструкция, о которой пойдет речь разработана нашим модератором Starichok51, большим специалистом в области питания. Нет, он не повар, хотя, наверное, периодически жарит картошку с грибами или яичницу под настроение, он специалист в области питания электрического. Но, как любой кот, страшно ленив, и документально оформить свои разработки у него никак не доходят лапы. Так что я взялся за это дело и сейчас расскажу об одном весьма полезном устройстве, которое может пригодиться не только автомобилистам, хотя адресовано оно в первую очередь им.
Не смотря на стремительное развитие портативной электроники с низковольтным питанием, довольно часто возникают ситуации, когда от бортовой сети автомобиля нужно запитать вполне полнофункциональное устройство — ноутбук, нетбук или что-то в этом роде. Даже не обязательно для работы, а хотя бы подзарядить внутренний аккумулятор. Однако напряжение питания современных ноутбуков — 19 Вольт. Таким образом, нам нужен некий преобразователь, который поднимет напряжение автомобильной сети до уровня, необходимого для питания ноутбука. При этом, он должен быть достаточно мощным, чтобы обеспечить необходимый ток как для заряда аккумулятора, так и для полноценной работы компьютера. Очень желательно, чтобы такой преобразователь не использовал активное охлаждение в виде вентилятора, поскольку содержание пыли в автомобиле явно повышенное, а любой вентилятор затаскивает пыль внутрь устройства и довольно быстро забивает радиаторы охлаждения. Да и вообще — отсутствие механических движущихся частей очень положительно сказывается на надежности устройства.
Всем эти требованиям отвечает рассматриваемый преобразователь.
Основные характеристики преобразователя:
Номинальное выходное напряжение, В 19(+/-5%)
Максимальный ток нагрузки, А 5
Входное напряжение, В 12. 14
Максимальный потребляемый ток, А 10
В основе преобразователя микросхема UC3845, ШИМ-контроллер с частотой преобразования 90кГц. В качестве выходного ключа используется полевой транзистор IRF3205. Выходное напряжение выпрямляется диодной сборкой VD2 и фильтруется конденсатороами C7. C9. С помощью обратной связи через резисторы R9, R10 осуществляется стабилизация выходного напряжения. Дроссель L1 предотвращает попадание напряжения высокой частоты в бортовую сеть автомобиля. Без этого дросселя магнитола или любое другое аудио оборудование в автомобиле, которое питается от бортовой сети начнет пищать как мышь при одновременной работе с данным преобразователем.
Конструктивно устройство выполнено на печатной плате из одностороннего стеклотекстолита.
При этом выходной транзистор и диодная сборка размещены со стороны печатных проводников, на специально вытравленные полигоны для отвода тепла, к котороым транзистор и диодная сборка прижимаются винтами с гайкой. Таким образом, устройству не нужно активное охлаждение, оно вполне обходится без него.
Конденсаторы C5, C7, C8 желательно с малым внутренни сопротивлением, Low-Esr (например, ELZET CD287). Из-за высокой частоты преобразования обычные конденсаторы могут довольно существенно нагреваться. Конденсатор С9 вполне допустимо взять пленочный, типа К73-17. Резисторы R7, R8 — мощностью не менее 2Вт.
Теперь о дросселях. Для их изготовления вам понадобится два кольца Magnetics 77310 А7 и около 2 метров провода в эмалевой изоляции, диаметром 0,8мм. Например ПЭТВ-2.
Для дросселя L1: отрежьте три равных куска провода длиной 260мм каждый. Сложите три провода вместе так, чтобы получилась плоская лента и полученной лентой произведите намотку на кольце до его заполнения, оставив для выводов дросселя по 10мм провода. Должно получиться 8-9 витков. Намотку постарайтесь произвести так, чтобы провод как можно плотнее прилегал к граням кольца.
Для дросселя L2: отрежьте два равных куска провода по 610мм каждый, сложите их вместе и намотайте на втором кольце 22 витка, оставив для выводов дросселя 10мм провода. Намотка, как и в первом случае должна производится таким образом, чтобы провод максимально плотно прилегал к поверхности кольца.
Подключать преобразователь вполне можно к гнезду прикуривателя автомобиля. Максимальный ток, потребляемый преобразователем составляет 10А, в то время, как максимально допустимый ток прикуривателя — около 16А. Для подключений необходимо использовать провод сечением не менее 2,5 кв. мм. Подключать компьютер к преобразователю необходимо проводом сечением не менее 1,5 кв. мм. Желательно использовать провод в двойной изоляции.
И еще одно, несомненно полезное замечание. Специально для самых ленивых котов в лаборатории РадиоКОТструктор есть готовый набор для сборки данного устройства. В наборе есть абсолютно все, даже припой и винты с гайками. Вам понадобится только паяльник и пара часов времени.
Источник
Питание ноутбука от бортовой сети автомобиля — самодельный преобразователь
Korshun-x 29 декабря 2013
- Источники питания
У многих есть машина, а ноутбук есть почти у каждого. Бывают ситуации, когда нужно запитать или зарядить его аккумулятор в авто, но тут возникает вопрос КАК?
Питание ноутбука от авто невозможно, едь напряжение бортовой сети всего 13,5 вольт (в среднем). Именно для решения этой проблемы и пригодится сделанный своими руками преобразователь напряжения.
Схема этой не сложной самоделки представлена ниже.
Запас по току этой схемы 8 ампер, при напряжении в 19 вольт. В то время, когда любой современный ноут потребляет не больше 4 ампер, запас имеется приличный.
Давайте рассмотрим примененные детали и принцип, по которому работает данный преобразователь. Его сердцем является микросхема UC3843 (генератор с широтно-импульсной модуляцией и компаратором для стабилизации напряжения на выходе) в типовом включении. Мускулами являются дроссель L1 и сборка полевых транзисторов VT1 (IRF7341), в моем случае применен Р1203, выпаянный из материнской платы какого-то ноутбука. Малые габариты устройства достигаются применением деталей для поверхностного монтажа и высокой частоте преобразования (150 кГц соответственно элементам R2 C2). Накачка повышенного напряжения происходит на дросселе L1 и диоде Шоттки VD1 выпрямителя. Дроссель наматывается на стандартном желто-белом кольце от компьютерного блока питания. Количество витков 20 – 25, проводом 1,5 мм (удобнее мотать сложенным втрое проводом 0,6). Диод VD 1 применен из того же блока, что и кольцо. И имеет маркировку F2020CT. Выходное напряжение, при желании, можно получит и другое, для этого нужно подобрать резистор R9.
Немного о возможных заменах и конструктивных особенностях.
Как я уже говорила вместо матрицы IRF7341, применен полевой транзистор Р1203, но можно использовать и что-нибудь попроще, типа IRFZ48N, IRFZ44N, IRFZ34N, из отечественных транзисторов подойдут КП727Б, КП723, КП746, любые из серии КП812, или другой мощный N-канальный полевик.
Конструктивно этот самодельный преобразователь выполнен на монтажной плате, 5 на 4 сантиметра. Конечно же, можно было и печатную плату протравить, но времени было мало поэтому так.
Источник
Питание ноутбука от прикуривателя своими руками. Автомобильный преобразователь для заряда ноутбука. Зарядка от прикуривателя
Отправляясь куда то в поездку или на природу, я обязательно беру с собой ноутбук. Ноутбук постоянно находится в работе: либо схемы разрабатываю, либо работаю с сайтом. Как всегда зарядка заканчивается на самом интересном месте, неприятный сюрприз не так ли. Задумался прикупить зарядку от прикуривателя, но ценны у нас от 1500р. Так и желание отпало платить за кусок метала, зато появилось желание собрать самостоятельно, тем более, что схемы есть в интернете, но как и в прошлый раз при поисках , устройства собранны в основном на UC3842. Был вариант собрать на NE555, но как организованна защита по напряжению мне не понравилось, если вылетит ключ, вылетит мой ноутбук.
Понял принцип работы таких преобразователей, принялся за самостоятельную сборку от нулей. Нарисовал схему автомобильного преобразователя для ноутбука, взяв за основу TL494, которых у меня много заказал с Китая
Особо рассказывать нечего, генератор на TL494 с обратной связью по напряжению и току. Генератор настроен на частоту 134кГц, на выходе частота 67кГц. Согласовал управление полевиком через транзисторный повторитель, что бы разгрузить микросхему. Повторитель собрал на и . Полевик с материнской платы 60N03P с максимальным током 60А и максимальным напряжением 30В, диод Шоттки на 55А оттуда же. На выходе для фильтрации и стабилизации емкости установлена керамика и электролиты два по 470мкФ. На минусовой шине установлен шунт для измерения тока. Все посчитано, к сборке готов. Осталась основная деталь всего преобразователя не сложная в изготовлении
Что бы узнать какая нужна индуктивность, воспользуюсь программкой BoosterRing 6.1 из пакета Все в одном от Владимира Денисенко
Выбираю размер колечка и материал. Колечко кстати из ATX блока питания
В исходных данных выбираю тип дросселя Инвертирующий(buck-boost)
Напряжение питания выбираю исходя от напряжений в бортовой сети автомобиля минимальное 11В, максимальное 15В
Выходное напряжение выбираю 19,5В. Ток потребления 3А, а частота 67кГц
Провод диаметром 0,71мм, так же ставлю галочку использовать желаемый диаметр провода
Нажимаю кнопочку Расчитать
Из расчета знаю, что мне надо сложить 4 провода длиной 1,2м, намотать 27 витков и получить индуктивность 70мкГн. Что я и принялся делать, приготовил все компоненты и принялся аккуратно мотать
Дроссель довольно не плохой для первой намотки на кольцо. Зачистил все проводки и проверил прозвонкой, нет ли между ними КЗ. Cкрутил края всех проводков в косу и пропаял. Тут же применил свою новую , показания почти расчетные, но доматывать было нечего, поэтому оставил как есть.
Основная деталька готова, все остальное мелочь
Перепутал каким то образом местами сток-исток, пришлось резать дорожку и ставить медную перемычку. В проекте косяк свой исправил
Схема запустилась не сразу, сначала было перепаяно десяток резисторов, что бы точно подобрать напряжение и ток защиты. Но в целом схема заработала без проблем
Схему пробовал нагрузить на лампу накаливания 24В 100Вт, ток ограничивается на 2,9А, напряжение проседает.
Выложу фотки преобразователя со всех сторон
Неплохо получилось в итоге, теперь надо подумать о корпусе и шнурке питания. Разъем питания уже мчится с Китая , скоро выложу фотки в корпусе
Так же печатная плата будет работать в условиях сильной вибрации, поэтому необходимо залить схему лаком
С ув. Эдуард
Описываемый ниже адаптер, представляет собой однотактный импульсный повышающий преобразователь, собранный по типовой схеме на микросхеме UC3843. Он обеспечивает на выходе напряжение 16.5 В при токе до 4 А. При сборке этой схемы использовались SMD- компоненты, благодаря чему, размеры собранного устройства составляют 45x30x15 мм.
Устройство собрано на двухсторонней печатной плате, размером 37 на 23 мм. из стеклотекстолита, толщиной 1.5 мм. Верхняя сторона платы используется только в качестве экрана и общего провода. Печатная плата устройства (зеркальное изображение) приведена ниже на рисунке.
Катушка L1 и конденсатор С9 установлены с обратной стороны платы (под катушку в плате сделан вырез), все остальные детали — так, как показано на рисунке. Типы примененных компонентов приведены в таблице.
Правильно собранное устройство налаживания не требует. Если требуется иное выходное напряжение, следует изменить величину резистора R9, исходя из того, что на резисторе R10 должно при этом получиться напряжение, равное 2.5 В.
Вот, посмотрите ещё один вариант исполнения данного адаптера с применением элементов SMD.
Рисунок печатной платы данного устройства.
Расположение элементов на печатной плате данного устройства.
Схема второго адаптера практически не отличается от вышеприведённой. Разница лишь в том, что в данной схеме можно регулировать выходное напряжение в пределах 14-27 вольт. Средний ток нагрузки её составляет 2,5 ампера.
Применённые схеме транзисторы, диоды, а так же данные используемого дросселя — аналогичны и заменяемые на описанные в аналогичных схемах выше. Поэтому останавливаться подробно на этом не буду.
Ниже на фотографиях вариант сборки данной схемы с применением так же SMD-= компонентов.
У многих есть машина, а ноутбук есть почти у каждого. Бывают ситуации, когда нужно запитать или зарядить его аккумулятор в авто, но тут возникает вопрос КАК?
Питание ноутбука от авто невозможно, едь напряжение бортовой сети всего 13,5 вольт (в среднем). Именно для решения этой проблемы и пригодится сделанный своими руками преобразователь напряжения.
Схема этой не сложной самоделки представлена ниже.
Запас по току этой схемы 8 ампер, при напряжении в 19 вольт. В то время, когда любой современный ноут потребляет не больше 4 ампер, запас имеется приличный.
Давайте рассмотрим примененные детали и принцип, по которому работает данный преобразователь. Его сердцем является микросхема UC3843 (генератор с широтно-импульсной модуляцией и компаратором для стабилизации напряжения на выходе) в типовом включении. Мускулами являются дроссель L1 и сборка полевых транзисторов VT1 (IRF7341), в моем случае применен Р1203, выпаянный из материнской платы какого-то ноутбука. Малые габариты устройства достигаются применением деталей для поверхностного монтажа и высокой частоте преобразования (150 кГц соответственно элементам R2 C2). Накачка повышенного напряжения происходит на дросселе L1 и диоде Шоттки VD1 выпрямителя. Дроссель наматывается на стандартном желто-белом кольце от компьютерного блока питания. Количество витков 20 – 25, проводом 1,5 мм (удобнее мотать сложенным втрое проводом 0,6). Диод VD 1 применен из того же блока, что и кольцо. И имеет маркировку F2020CT. Выходное напряжение, при желании, можно получит и другое, для этого нужно подобрать резистор R9.
Немного о возможных заменах и конструктивных особенностях.
Как я уже говорила вместо матрицы IRF7341, применен полевой транзистор Р1203, но можно использовать и что-нибудь попроще, типа IRFZ48N, IRFZ44N, IRFZ34N, из отечественных транзисторов подойдут КП727Б, КП723, КП746, любые из серии КП812, или другой мощный N-канальный полевик.
Конструктивно этот самодельный преобразователь выполнен на монтажной плате, 5 на 4 сантиметра. Конечно же, можно было и печатную плату протравить, но времени было мало поэтому так.
Деловые люди знают, что компьютер незаменим в бизнесе, он нужен везде — дома, в офисе, на даче и даже в машине. Но конечно компьютер вряд ли кто — то решит потащить в машину, а вот ноутбук или нетбук — запросто, удобно и уютно. Но вот беда — зарядка почти села, а бортовая сеть автомобиля не способна зарядить ноутбук, на помощь спешит инвератор напряжение 12вольт — 18вольт. Преобразователь имеет очень компактные размеры и собирается за пол часа при наличии всех деталей, он достаточно простой, думаю его способен собрать даже новичок. Схема проверена и рекомендована к повторению.
Сердцем автомобильного преобразователя для ноутбука является микросхема 3842/3845. Транзистор можно заменить также 13007, 13009 (отечественными не пробовал). Керамические конденсаторы с маркировкой 105 имеют емкость 1 микрофарад. Схема упрощрна до минимума, транзистор нужно прикрепить на теплоотвод. Диодный мост можно использовать готовый или сделать самому, диоды нужно подобрать мощные поскольку ток достигает до 4 ампер.
Трансформатор может быть намотан на ферритовом кольце или же на трансформаторе из компьютерного блока питания, первичная обмотка намотана 6-ю жилами провода с диаметром 0,5 мм (каждая), состоит из 5 витков, вторичная обмотка имеет намотана 4-мя жилами провода того же диаметра, что и первичная, состоит она всего из 10 витков.
Витки первичной и вторичной обмотки нужно растянуть по кольцу для повышения кпд преобразователя (кпд до 90 %). Выходной конденсатор с емкостью 2200 микрофарад 25 вольт. Резистор 820 ом подбираем с мощностью 1-2 ватт поскольку он может сильно греться и маломощный резистор не выдержит. В интернете можно найти немало схем для зарядки ноутбуков от бортовой сети автомобиля, но как право в них используется дроссель, здесь было решено использовать трансформатор вместо дросселя по некоторым причинам. Во первых нужно было создать преобразователь повышающая часть которого независима от бортовой сети автомобиля, поскольку именно это может быть причиной помех, которые нарушают нормальную работу преобразователя.
Также в данном преобразователе присутствует помехоподавляющий фильтр, который тут просто необходим, выполнен он на основе дросселя и конденсаторов, дроссель выполнен на кольце феррита и содержит 10 витков провода диаметром 1-1,5 миллиметр. Готовое устройство помещаем в подходящий по размерам пластиковый корпус.
В этом посте собраны наиболее интересные схемные решения по преобразованию бортовой сети автомобиля 12 вольт в напряжение 16-18 вольт для питания ноутбука. Схемы реализованы на зарубежных и отечественных элементах, кому как нравится. Выбирайте, творите и не забудьте пожалуйста оставить отзыв о выбранной схеме.
Авто-адаптер для ноутбука.
Для питания ноутбуков от бортовой сети автомобиля выпускаются преобразователи напряжения, но они имеют достаточно высокую стоимость, от $50 и выше. Стоимость описываемого преобразователя намного ниже. Тем более, что большую часть деталей можно взять из старого блока питания от компьютера. Сборка займет пару вечеров.
В качестве формирователя ШИМ преобразователя используется интегральный таймер КР1006ВИ1 или импортный аналог LM555. С его выхода сигнал поступает на ключ — полевой транзистор. Частота преобразования определяется конденсатором С1, и при емкости указанной на схеме, составляет примерно 40 кГц. Управление скважностью осуществляется через вывод 5 таймера. Некоторые типы импортных аналогов таймера имеют другую схему управления по этому входу, и поэтому могут работать некорректно.
Вместо транзистора 45N03 можно применить BUZ11, CEB603, CEP703, NDP406, IRFZ33 и многие другие, главное, чтобы максимальное напряжение было не менее 40 В, максимальный ток не менее 15 А, и корпус ТО-220.
VD2 – сдвоенный диод Шоттки с обратным напряжением не менее 40 В и максимальным током не менее 15А, в корпусе ТО-220. Например SLB1640, или STPS1545. Диод VD1 – защита от переполюсовки, прямой ток не менее 6 А. Вместо VT2 применим, например, КТ315. Стабилитрон VD3 определяет выходное напряжение преобразователя.
Одна из самых ответственных деталей – дроссель, намотан на кольце из порошкового железа, диаметром около 27 мм, применяемого в компьютерных блоках питания в качестве дросселя групповой стабилизации. Обмотка выполнена 21 витком из трех сложенных вместе проводов ПЭВ-1 диаметром 0.75 мм. Дроссель имеет индуктивность около 44 мкГн и сопротивление около 0.1 Ом.
В качестве корпуса используется металлическая коробка от 50-ваттного электронного трансформатора для питания 12 В галогенных ламп освещения. Ее размеры 67×46×30 мм. В этом корпусе вместо двух ключей полумоста можно удобно разместить полевой транзистор и диод, чтобы прижать их к стенке корпуса для отвода тепла. Корпуса транзистора и диода нужно изолировать от корпуса прокладкой из фторопласта или слюды.
Рисунок печатной платы для лазерно-утюговой технологии.
Схема размещения компонентов на плате:
КПД этого преобразователя, при выходном токе 3 А, составляет 95%. При менее жестких режимах КПД может достигать 97%, он сильно зависит от качества дросселя, VT1 и VD2. Впрочем повышение КПД имеет смысл только для снижения выделяемого тепла полевым транзистором, диодом Шоттки и дросселем. При указанном КПД, при длительной работе, корпус преобразователя имеет температуру около 45 градусов Цельсия.
Следует обратить особое внимание на качество разъемов, так как через них будет протекать значительный ток. Также провода, особенно идущие к входному разъему от прикуривателя, нужно выбирать сечением более 1.5 мм2.
Автомобильный блок питания ноутбука на таймере КР1006ВИ1.
Для питания ноутбука от бортовой сети автомобиля требуется повышающий преобразователь с выходным напряжением около 19 В. В качестве примера построения подобных преобразователей можно указать конструкцию , выполненную на базе специализированной микросхемы КР1156ЕУ5. Хотя в настоящее время существует большое разнообразие микросхем для построения импульсных источников питания, предложенная конструкция, схема которой изображена на рисунке, выполнена на таймере КР1006ВИ1. При этом схема отличается простотой и обладает неплохими параметрами: так, КПД преобразователя составляет около 88 %.
Используемый в устройстве тип модуляции является разновидностью частотно-импульсной модуляции и характеризуется тем, что ширина импульсов является переменной, а длительность паузы между ними – постоянной. Максимальный ток нагрузки преобразователя составляет 4,74 А. В схеме реализована защита от пониженного входного напряжения: в случае его снижения ниже 9 В выходное напряжение преобразователя тоже начинает снижаться, предотвращая насыщение дросселя и выход из строя силового ключа. Также имеется защита выхода от значительного перенапряжения: в случае нарушения обратной связи выходное напряжение преобразователя ограничивается величиной порядка 25 В.
Микросхема DA1 включена по схеме генератора прямоугольных импульсов, ширина которых зависит от напряжения на выводе 5 – модулирующего напряжения. Номиналы времязадающих элементов R2 и C1 выбраны таким образом, что пауза между импульсами имеет продолжительность около 9,1 мкс, а длительность импульсов варьируется ориентировочно от 2,8 мкс (при Uвх = 15 В) до 9 мкс (при Uвх = 10 В). Таким образом, частота преобразования может находиться в пределах 55…84 кГц. Напряжение на выводе 5 составляет 4,1…6 В в зависимости от входного напряжения. Этот диапазон определяется сопротивлением резистора R1. В случае малой нагрузки модулирующее напряжение может быть ниже указанных значений. Импульсы, формируемые на выходе микросхемы, управляют силовым ключом VT2, который коммутирует дроссель L1. Дроссель через диод VD2 передаёт заряд накопительному конденсатору C5. На этом конденсаторе формируется выходное напряжение около 19 В.
Стабилизирующая обратная связь выполнена на транзисторе VT1 и стабилитроне VD1. Разность выходного напряжения преобразователя и напряжения стабилизации стабилитрона VD1 сравнивается с напряжением эмиттерного перехода транзистора VT1. Полученная в результате сравнения ошибка усиливается транзистором и определяет модулирующее напряжение. Посредством конденсатора C3 реализован фильтр НЧ, который уменьшает влияние пульсаций выходного напряжения на модулирующее напряжение. Резистор R4 ограничивает базовый ток транзистора VT1. Резистор R5 задаёт ток стабилизации стабилитрона около 2 мА. Предположим, выходное напряжение преобразователя стало выше номинального значения. Тогда ток базы транзистора увеличивается, и напряжение на выводе 5 микросхемы снижается. В результате, скважность импульсов повышается, что приводит к снижению выходного напряжения преобразователя. При снижении выходного напряжения ниже номинального значения процессы идут в обратном направлении.
Вывод 4 микросхемы соединён с выводом 5 для того, чтобы генератор при необходимости мог отключаться и пропускать импульсы. Такая необходимость бывает при работе преобразователя с малой нагрузкой или без нагрузки. Дело в том, что из-за наличия пульсаций тока через дроссель за время, пока силовой ключ VT2 открыт, дроссель успевает запасти количество энергии, которое затем может оказаться невостребованным нагрузкой, что приводит к росту выходного напряжения. Обратная связь стремится скомпенсировать повышение напряжения, убрав избыток тока за счёт уменьшения напряжения на выводе 5 и повышения скважности импульсов. Но этого может оказаться недостаточно, поскольку минимальная длительность импульсов ограничена, и тогда произошёл бы дальнейший рост выходного напряжения, приводящий к перегрузке цепи обратной связи. Поэтому, если модулирующее напряжение снизилось примерно до 0,7 В, на вывод 4 микросхемы поступает сигнал сброса и приостанавливает работу генератора. Поскольку при малой нагрузке генератор работает в режиме «стоп-старт», возможно появление акустических шумов, однако это не препятствует нормальному функционированию преобразователя.
Конденсатор C2 фильтрует помехи во входной цепи питания. Дополнительный фильтрующий конденсатор C4 следует установить в непосредственной близости к микросхеме DA1. Конденсатор C6 подавляет всплески выходного напряжения, которые образуются на внутренней индуктивности конденсатора C5 в моменты закрывания ключа VT2. Конденсаторы C4 и C6 должны быть керамическими.
Силовой транзистор КП727Б можно заменить на КП723 c буквами А–В, КП746 c буквами А–В, любые транзисторы из серии КП812, а также IRFZ34N, BUZ11 или аналогичные приборы, рассчитанные на постоянный ток не менее 15 А и имеющие, по возможности, малое сопротивление открытого канала. Диод с барьером Шоттки КД272А заменяется на 2Д2998 с буквами Б, В, КД2998 с буквами В–Д, MBR1635, MBR1645, любые приборы из серий 2Д252, КД272, КД273, 2Д2992–2Д2997, 2Д2999, параллельно соединённые сдвоенные диоды из серий КД270, КД271, КД238, а также другие диоды Шоттки, рассчитанные на прямой ток не менее 15 А и обратное напряжение не менее 25 В. Диод VD2 и транзистор VT2 необходимо снабдить теплоотводами площадью по 50 см2 каждый. В качестве стабилитрона VD1 можно использовать КС218Ж, КС518А, КС508Г, КС509Б, 1N4746 или другие стабилитроны с напряжением стабилизации 18 В. Для более точной настройки выходного напряжения может потребоваться подбор стабилитрона. Микросхема DA1, кроме указанной на схеме, может быть КР1087ВИ2, а также любым из зарубежных аналогов (NE555N и т. п.). Транзистор VT1 – КТ201Г, КТ306Г, КТ312В, КТ316Д, КТ342А, КТ342ГМ, КТ358В, КТ375Б, КТ3102А, КТ315 с буквами Б, Г, Е, Ж; КТ340 с буквами А, Б; КТ503 с буквами Б, Г; BC547A. Можно использовать и другие транзисторы, у которых типовое значение коэффициента передачи тока базы составляет около 100 при токе коллектора 1 мА. Дроссель L1 наматывается проводом ПЭВ-2 диаметром 1,25 мм на двух сложенных вместе кольцевых магнитопроводах КП27×15×6 из пермаллоя МП140. Подойдёт и более тонкий провод, соединённый в несколько жил с общей площадью сечения около 1 мм2. Намотка содержит 16 витков. Можно также применить жёлто-белый кольцевой магнитопровод T106-26 размерами 27×14×12 мм от многообмоточного дросселя в блоке питания компьютера, в этом случае оставляется имеющаяся на дросселе обмотка в 24 витка провода диаметром 1 мм, остальные обмотки удаляются. При самостоятельной намотке она выполняется в один полный слой провода диаметром 1…1,25 мм. Подойдут и другие дроссели с индуктивностью не менее 18 мкГн, рассчитанные на утроенный максимальный ток нагрузки. С другой стороны, индуктивность дросселя не должна быть слишком большой: при его индуктивности порядка 100 мкГн и более обратная связь стабилизатора может потерять устойчивость, и на коллекторе транзистора VT1 будут незатухающие колебания.
Используемые в устройстве конденсаторы C2, C5 должны иметь допустимый ток пульсаций соответственно около 2 А и 3 А или более. Также они должны иметь, по возможности, малое внутреннее сопротивление, т. е. относиться к категории низкоимпедансных конденсаторов («Low ESR»). Это позволяет снизить пульсации выходного напряжения и повысить надёжность устройства. Подойдут, например, конденсаторы Jamicon серий WL, TL, TZ; CapXon серий GF, LZ; Nichicon серий HV, HD. При необходимости каждый из указанных конденсаторов можно заменить несколькими параллельно соединёнными одинаковыми конденсаторами. При этом можно ориентировочно полагать, что допустимый ток пульсаций растёт пропорционально числу соединённых конденсаторов.
Для подключения устройства к бортовой сети автомобиля применяется вилка «прикуривателя» с внутренним предохранителем FU1. Провода, соединяющие вилку и вход преобразователя – гибкие, медные, многожильные в ПХВ изоляции, сечением не менее 2,5 мм2. Следует иметь в виду, что входной ток устройства может достигать 10 А. Он не должен течь через пружину внутри вилки «прикуривателя». Для этого пружина дублируется проводом.
Автомобильный адаптер для ноутбука.
Многие современные ноутбуки имеют возможность питания от бортовой сети автомобиля через гнездо прикуривателя. Если же в вашем ноутбуке такая возможность не предусмотрена, поможет описанное здесь устройство. Оно обеспечивает на выходе напряжение 16.5 В при токе до 4 А.
Схема устройства приведена на рисунке.
Оно представляет собой однотактный импульсный повышающий конвертор напряжения, собранный по типовой схеме на микросхеме UC3843. Отличительная особенность схемы — применение в ней SMD-компонент (в частности, силовых ключей в корпусе S08), что позволило «вписать» устройство в габариты «корпуса для радиолюбителя №1» (45x30x15 мм). Устройство собрано на двухсторонней печатной плате размером 37×23 мм из стеклотекстолита толщиной 1.5 мм, причем верхняя сторона платы используется только в качестве экрана и общего провода. Печатная плата устройства (зеркальное изображение) приведена на рис.2
Катушка L1 и конденсатор С9 установлены с обратной стороны платы (под катушку в плате сделан вырез), все остальные детали — так, как показано на рисунке. Типы примененных компонентов приведены в таблице.
Правильно собранное устройство налаживания не требует. Если требуется иное выходное напряжение, следует изменить величину резистора R9, исходя из того, что на резисторе R10 должно при этом получиться напряжение, равное 2.5 В.
Автомобильный блок питания для ноутбука.
Здесь представлена схема устройства (преобразователя) питания ноутбука от автомобиля (от аккумулятора). Для тех, кто много времени проводит за рулем автомобиля и при этом не желает расставаться со своим любимым ноутом, приведенная в статье схема преобразователя сослужит хорошую службу. Данное устройство повышает напряжение от 12 до 18 вольт, при этом обеспечивая выходной ток, равный 3.2 ампера, что вполне достаточно для работы ноутбука.
Применены постоянные резисторы МЛТ, оксидные конденсаторы К50-35 или подобные импортные, конденсатор С1 — К73-17 ; С3 — К10-17. Транзистор КТ854АМ можно заменить на КТ854 БМ или КТ819БМ с коэффициентом передачи по току не менее 15 ; диодную сборку SBL2040CT можно заменить на MBR1535CT — MBR1560CT, КД270ВС — КД270ЕС. Светодиод может быть любой из серии АЛ307, КИПД21, КИПД24, диод VD1 — любой маломощный выпрямительный.
Налаживание сводится к установке частоты преобразования, соответствующей максимальному КПД. Для этого ВХОД преобразователя через амперметр подключают к источнику постоянного тока напряжением 12В и мощностью не менее 100 Вт, в качестве которого можно применить импульсный блок питания от компьютера. К выходу преобразователя подключают нагрузочный резистор сопротивлением 5,1 Ом мощностью 50Вт (например ПЭВ-50) и параллельно ему — вольтметр постоянного тока. Конденсатором С4 плавно изменяя частоту преобразования, добиваются минимального значения выходного тока при неизменном выходном напряжении. Если не требуется получить максимальный КПД преобразователя, конденсатор С4 можно не устанавливать, но емкость конденсатора С3 должна быть 360пФ.
Источник