- ПИД регулятор
- Система управления
- Под капотом у ПИД регулятора
- P составляющая
- I составляющая
- D составляющая
- Настройка регулятора
- Реализация на C++
- Видео
- ПИД-регулятор своими руками
- I. Постановка задачи
- II. Теоретическая вводная
- III. Кому пользоваться регулятором?
- IV. Область функционирования.
- V. Диапазон настраиваемости.
- VI. Управление мощностью.
- VII. Измерение входных данных
- VIII. Вычисление воздействия
- IX. Применение воздействия.
- X. Подводные камни.
ПИД регулятор
ПИД регулятор – один из самых распространенных автоматических регуляторов. Он настолько универсален, что применяется практически везде, где нужно автоматическое управление. Например температурой: специальные печи, холодильники, инкубаторы, паяльники, сопло и стол 3D принтера, ИК паяльные станции и прочее. Поддержание частоты оборотов мотора, например для станков. Всевозможные балансирующие штуки, гироскутеры, сигвеи, левитирующие магнитные платформы, и конечно же квадрокоптеры и самолёты с автопилотом. Это всё ПИД регулятор. Почему именно ПИД? Существуют и другие регуляторы, превосходящие ПИД по адаптивности к управляемой системе и стабильности, например линейно квадратичный. Но, чтобы грамотно синтезировать такой регулятор, нужно быть гораздо больше чем “семи пядей” во лбу, а настройка ПИД регулятора дело хоть и неприятное, но фактически очень простое и под силу любому, а сам ПИД регулятор универсален для почти любого процесса.
Система управления
Прежде чем переходить непосредственно к пиду, очень важно понять и запомнить несколько базовых понятий, из которых состоит автоматическая система. В первую очередь это регулятор, который всем заправляет и находится в центре системы. Регулятор в данном понимании – математический алгоритм или часть программы, которая крутится на микроконтроллере. Регулятор, как алгоритм, работает с обычными числами. Объект управления – это девайс, которым мы управляем, например печка или мотор. Для этого у нас есть управляющее устройство, например диммируемый тен или драйвер мотора. Управляющее устройство получает от регулятора управляющий сигнал, то есть конкретное число. Это может быть заполнение шим сигнала, от 0 до 255, а может быть угол поворота сервомашинки от 0 до 180, потому что регулятору без разницы чем управлять. В объекте управления у нас стоит датчик, с которого регулятор получает управляемую величину, то есть текущий сигнал с датчика. Это – обратная связь, которая и даёт возможность системе ирчно поддержать заданное значение. В случае с печкой это температура, а с мотором – частота оборотов. Ну и наконец регулятор получает установку (уставку), то есть число, к которому он должен привести текущее значение с датчика. Установка может задаваться каким угодно образом: крутилкой, ползунком, энкодером, кнопками, да хоть смской или голосовым вводом. Регулятору это неважно, для него это просто цифра. Задача регулятора состоит в том, чтобы сравнивать текущее значение с установкой и выдавать управляющий сигнал на управляющее устройство. То есть в программе это будет выглядеть условно так: регулятор получил установку, регулятор получил значение с датчика, регулятор выполнил вычисления и выдал нам управляющий сигнал, опять же число. Если это шим – мы его подаём через функцию генерации шим. Есть ещё один момент – регулятор должен делать расчёты и применять управляющий сигнал через равные промежутки времени, то есть с равным периодом или частотой. Эта частота называется частотой дискретизации системы, а период обозначается как dt, прямо как период интегрирования.
Под капотом у ПИД регулятора
ПИД регулятор состоит из трёх составляющих: пропорциональной P, интегрирующей I и дифференциирующей D, формируется просто как сумма трёх значений, умноженных каждая на свой коэффициент. Эта сумма после вычислений становится управляющим сигналом, который подаётся на управляющее устройство, обозначим его как out.
kP, kI и kD это и есть те самые коэффициенты, которые нужно настроить для работы ПИДа. Значения тут могут быть самые разные, от 0.001 то десятков и тысяч, это зависит от конкретной системы. Тут есть ещё один момент: любой коэффициент может быть равен нулю, и в таком случае обнуляется вся его компонента. То есть регулятор можно превратить в П, ПИ, ПД, и прочие сочетания. Разные системы требуют разного подхода, именно поэтому ПИД регулятор такой универсальный. В дальнейшем будем пользоваться следующими названиями переменных:
- out – выход с регулятора (управляющий сигнал)
- setpoint – установка (заданное значение)
- input – вход (значение с датчика)
- err – ошибка регулирования
- dt – период вычисления и регулирования
P составляющая
Пропорциональная составляющая предоставляет собой разность текущего значения с датчика и установки.
Данная разность называется ошибкой регулирования, то есть насколько далеко находится система от заданного значения. Получается чем больше ошибка, тем больше будет управляющий сигнал и тем быстрее система будет приводить управляемую величину к заданному значению. Коэффициент kP тут влияет роль усиления ошибки и настраивается вручную. Но в то же время, если система пришла к заданной величине, ошибка станет равной нулю, и управляющий сигнал тоже! Другими словами, п регулятор никогда не сможет привести к заданному значению, всегда будет некая ошибка. П составляющая является основной в ПИД регуляторе и так сказать тянет самую большую лямку, регулятор может неплохо работать только лишь на ней одной. P составляющая исправляет ошибку в текущий момент времени.
I составляющая
Интегральная составляющая просто суммирует в саму себя ту же самую ошибку, разность текущего и заданного значения, умноженную на период дискретизации системы, то есть на время, прошедшее с предыдущего расчёта dt – фактически берёт интеграл от ошибки по времени.
В самом регуляторе это ещё умножается на коэффициент kI, которым настраивается резкость данной составляющей. В интегральной составляющей буквально копится ошибка, что позволяет регулятору с течением времени полностью её устранить, то есть привести систему ровно к заданному значению с максимальной точностью. I составляющая исправляет прошлые, накопившиеся ошибки.
D составляющая
Дифференциальная составляющая представляет собой разность текущей и предыдущей ошибки, поделенную на время между измерениями, то есть на ту же dt, которая общий период регулятора. Иными словами – это производная от ошибки по времени.
Фактически D составляющая реагирует на изменение сигнала с датчика, и чем сильнее происходит это изменение, тем большее значение прибавляется к общей сумме. Иными словами, D позволяет компенсировать резкие изменения в системе и при правильной настройке предотвратить сильное перерегулирование и уменьшить раскачку. Коэффициент д позволяет настроить вес, или резкость данной компенсации, как и остальные коэффициенты регулируют свои составляющие. D составляющая в первую очередь нужна для быстрых систем, то есть для систем с резкими изменениями, такие как квадрокоптер или шпиндель станка под переменной нагрузкой. D составляющая исправляет возможные будущие ошибки, анализируя скорость.
Настройка регулятора
Для настройки регулятора нужно варьировать коэффициенты:
- При увеличении kP увеличивается скорость выхода на установленное значение, увеличивается управляющий сигнал. Чисто математически система не может прийти ровно к заданному значению, так как при приближении к установке П составляющая пропорционально уменьшается. При дальнейшем увеличении kP реальная система теряет устойчивость и начинаются колебания.
- При увеличении kI растёт скорость компенсации накопившейся ошибки, что позволяет вывести систему точно к заданному значению с течением времени. Если система медленная, а kI слишком большой – интегральная сумма сильно вырастет и произойдёт перерегулирование, которое может иметь характер незатухающих колебаний с большим периодом. Поэтому интегральную сумму в алгоритме регулятора часто ограничивают, чтобы она не могла увеличиваться и уменьшаться до бесконечности.
- При увеличении kD растёт стабильность системы, она не даёт системе меняться слишком быстро. В то же время kD может стать причиной неадекватного поведения системы и постоянных скачков управляющего сигнала, если значение с датчика шумит. На каждое резкое изменение сигнала с датчика Д составляющая будет реагировать изменением управляющего сигнала, поэтому сигнал с датчика нужно фильтровать (читай урок по фильтрам).
Вот так выглядит процесс стабилизации при изменении коэффициентов: Настройка регулятора – дело не очень простое. Начальные коэффициенты для подбора можно получить по следующему алгоритму: сначала выставляем все коэффициенты в 0. Плавно увеличиваем kP до появления незатухающих колебаний. Значение kP, при котором они появились, запишем и обозначим как kP1. Далее замеряем период колебаний системы в секундах, обозначим как T. Итоговые коэффициенты получим так:
- kP = 0.6 * kP1
- kI = kP / T * 2 * dt
- kD = kP * T / 8 / dt
Например, незатухающие колебания появились при kP 20, период колебаний составил 3 секунды. Период dt в системе будет 50 мс (0.05 с). Считаем:
На полученных коэффициентах должны более-менее работать большинство систем, но не все. Также можно воспользоваться автоматическим тюнером коэффициентов, например два разных алгоритма встроены в библиотеку GyverPID.
Реализация на C++
Соединяя все рассмотренные выше уравнения, получим:
Это готовая функция, которая принимает значение с датчика, установку, три коэффициента и время, а также ограничение выхода с регулятора. Как пользоваться этой функцией: функция должна вызываться с некоторым периодом, причем длительность этого периода нужно будет передать в функцию в секундах. Если попроще, можно использовать задержку. Но делать так не рекомендуется, лучше сделать таймер на миллис и работать с ним. Функция возвращает управляющий сигнал, то есть можно подать его например как ШИМ. Период dt имеет такой смысл: чем инерционнее у нас система, тем реже можно вычислять пид. Например для обогрева комнаты период можно поставить 1 секунду или больше, а для контроля за оборотами двигателя надо будет поставить пару десятков миллисекунд, то есть около сотни раз в секунду.
Видео
Источник
ПИД-регулятор своими руками
I. Постановка задачи
II. Теоретическая вводная
Как получается ПИД-регулятор? Берём разницу между текущей температурой и нужной, умножаем на настраиваемый коэффициент, получаем мощность, которую надо выдать в данный момент. Это пропорциональная составляющая, она работает в момент появления рассогласования — то есть моментально откликается как на изменение уставки, так и на поведение объекта. Начал подогреваться? Мощность начинает спадать. Перегрелся? Выключилось, или даже дали сигнал охлаждения. Всё хорошо, вот только в реальной жизни эффект от воздействия проявляется с запаздыванием, а на объект воздействуем не только мы, но еще и окружающая среда: разогретый реактор не только внутри горячий, но еще и остывает, отдавая тепло комнате, а потому как только выключаем мощность, он сразу начинает остывать. Поэтому чистый пропорциональный регулятор колеблется вокруг точки поддержания, и тем сильнее колеблется, чем выше воздействие окружающей среды / содержимого реактора.
Чтобы компенсировать «внешние» воздействия на реактор, в цепь добавляют интегральную составляющую. Всё рассогласование, которое было в системе, идёт на интегратор (соответственно, как только мы перегрели — сумма уменьшается, пока недогрето — сумма увеличивается). И накопленный интеграл, со своим коэффициентом, даёт свою прибавку-убавку к мощности. В результате такого подхода, при стационарном процессе, через некоторое время интеграл подбирает такой вклад в сумму с мощностью, который компенсирует потери окружающей среды, и колебания исчезают — интеграл становится стабильным, поэтому величина выдаваемой мощности становится постоянной. Причем так как при этом держится нужная температура, рассогласование отсутствует, пропорциональная составляющая не работает вообще.
Для компенсации влияния задержек между воздействием и реакцией системы, в систему добавляют дифференциальную составляющую. Просто пропорциональный регулятор даёт мощность всё время, пока температура не достигнет нужной точки, пропорционально-дифференциальный начинает снижать подаваемую мощность раньше, чем догрелся до нужной точки — так как рассогласование уменьшается, имеется наличие отрицательной производной, уменьшающей воздействие. Это позволяет минимизировать перегрев при больших переходах.
Итак, с физическим смыслом разобрались, перейдём к основым вопросам реализации.
III. Кому пользоваться регулятором?
Что из этого следует? Из этого следует, что техники понимают физическую составляющую, и имеют опыт настройки аппаратных пид регуляторов. А значит, программная реализация должна исходить из удобства настройки техниками — повторяя физическую модель. И это крайне важно! Очень часто в угоду упрощения кода коэффициенты меняют, например, на обратные — чтобы избавиться от деления. В результате, настройка превращается в ад и кошмар, и требуется опыт настройки данного конкретного регулятора, вместо понимания процесса. Отсюда получаем, что наши коэффициенты — постоянная интегрирования и постоянная дифференцирования — должны иметь размерность времени, то есть задаваться в секундах, а никак не в «1/с», как это любят делать.
IV. Область функционирования.
1200°C, управляется только подача мощности.
Точность управления определяется во-1х точностью измерения: градуировочные таблицы даны через 0.1 градуса; линейность внутри таблиц в принципе достойная, поэтому точность ограничена в первую очередь усилителем и измерителем тока. В моём случае, хотелось добиться точности поддержания 0.1 градуса, поэтому измеритель настроен на 1/32 градуса: это даёт
3 кванта на 0.1 градуса, таким образом, имея нормальный «шум» регулирования +-1 квант мы остаёмся в пределах всё тех же 0.1 градуса. Использование 1/32 позволяет работать с фиксированной точкой — 5 бит = дробная часть, остальное — целая. В 16 бит это получается представить от 0 до 2047 °. Вместо работы с отрицательными числами, мы будем работать в кельвинах вместо цельсиев, таким образом — представляется от 0 до 2047 °K, что эквивалентно от -273 до 1775 °C; с шагом в 0,03125 °.
V. Диапазон настраиваемости.
Для управления микрореактором с мощной силовой установкой может оказаться что для нагрева на 10 градусов достаточно 1% мощности, в то время как для большой инертной печи для того чтобы подогреть на градус едва-едва хватает 100% мощности подогрева. (В реальной жизни, это выглядит так — есть несколько подогревателей с ручным управлением — они включаются отдельным рубильником и производят начальный нагрев, в дальнейшем поддержание рабочей точки обеспечивает терморегулятор, управляя еще одним подогревателем, который на полной мощности выдаёт максимум +10°C к тому, что нагрели постоянно включенные). Исходя из этого, предельным коэффициентом пропорциональности логично предположить 100% мощности на 1 градус. Больше не имеет смысла, так как мы хотим получить управляемость в 0.1 градуса. Минимальный, для простоты, я взял инверсным — 1% мощности на 100 градусов.
Диапазоны временных коэффициентов вычисляются просто исходя из наших условий работы регулятора. Так как мы управляем через мощностью симистор путём вычисления задержки момента включения после прохождения через 0, предельная частота работы регулятора — 50Гц. Если мы уверены, что управляем мощностью которой пофиг плюс или минус, мы можем работать на 100Гц, но это не всегда так, и потому лучше каждый раз дозировать равное количество как положительной так и отрицательной полуволны. Для упрощения жизни, я снизил время работы до 25Гц, тем самым любое вычисленное воздействие будет действовать в течение 4 полуволн, и за это время у меня будет возможность рассчитать новое воздействие.
Таким образом, постоянные времени задаются через 1/25 сек, от 0 до
2000 сек (2000*25 = 50000, как раз в 16бит влазит).
Ну и еще у нас есть ограничение мощности минимальное и максимальное, от 0 до 100%.
VI. Управление мощностью.
Начиная с этого момента все теоретические выкладки заканчиваются, начинается горькая практика, привязанная к конкретной реализации.
Итак, мы уже решили что управляем задержкой открывания симистора после прохождения через 0. Таким образом, задержка в 0 означает 100% мощность, бесконечная задержка = 0% мощности.
Вопрос: с какой точностью мы можем управлять мощностью? Вообще, с точностью отсчета времени нашего таймера. С другой стороны, какая нужна мощность? Мы вычисляем какой % мощности нужно подать на 0.04сек. В принципе, по опыту, управления мощностью даже с точностью в 1% на частоте в 0.1сек хватает для поддержания температуры в 1 градус. У нас управление 0.04сек (в 2.5раза быстрее). Поэтому было принято решение рассчитать таблицу мощности через 1/250 от максимума (с шагом в 0.4%). Это позволяет таблицу иметь не сильно большую (500 байт), и при этом иметь точность выше 1%. Если ваш случай требует бОльшей точности — пересчитать не так сложно.
Теперь поговорим о расчете этой самой таблицы. Во-1х следует учесть, что есть момент срабатывания сигнала прохождения через ноль. В моем случае — 12В. То есть когда входное напряжение упадёт ниже 12В, я получу сигнал прохождения через 0.
Это означает, что для 100% мощности время запуска = времени прохождения 12В.
Процессор у меня работает на частоте 32786, PLL настроен на 384/2, полуволна имеет 100Гц, откуда получаем, что код для загрузки константы в таймер для времени T имеет вид:
Нам нужно рассчитать время задержки, дающее равномерное увеличение площади включенной части синусоиды. То есть нам нужно иметь отсчеты времени, дающие равномерное увеличение мощности. Полная мощность, которую мы выдаём — это интеграл по всей синусоиде. [кто знает, как на хабре формулы вставлять? никак? пишу в maple-нотации тогда].
Таким образом, нам нужно пройтись по всем Q с заданной точностью, и для каждой из них найти T.
Я для себя это решил вот таким тупым способом:
Всё, на выходе мы получили табличку в 250 значений, соответствующих константам загрузки таймера до момента поджига после получения сигнала о прохождении через 0 (точнее, через 12В, как я говорил выше).
VII. Измерение входных данных
Я пропускаю этот вопрос, потому как он достоен отдельной большой статьи. О том, как я решал вопрос с термосопротивлением, можно найти в архиве почившего в бозе моего блога.
Главное что нам надо знать, это что мы измеряем данные с нужной нам частотой (в данном случае — 25Гц), и нужной точностью (на выходе — число от 0 до 2048 градусов кельвина через 1/32 градуса). Данные предполагаются уже нормализованные для всех дальнейших расчетов.
Если будет кому интересно — пишите в комментах, распишу в следующий раз как это делается для термопар.
VIII. Вычисление воздействия
И вот свершилось: у нас есть все данные для того, чтобы наконец-то произвести то, ради чего мы всё затевали: вычислить какую же мощность следует подать на управляющий элемент.
Вспомним еще раз формулу ПИД регулятора:
U = K * ( Err + (1/Ti)*Int + Td*dErr )
- U — мощность, которую следует выдать;
- K — пропорциональный коэффициент (обратите внимание — вынесен за скобки, почему — чуть ниже опишу);
- Ti — постоянная времени интегрирования. Обратите внимание — в расчетах используется обратная величина;
- Td — постоянная времени дифференцирования
- Err — текущее рассогласование (разница между уставкой и измеренной температурой
- dErr — производная рассогласования (разница между текущей и прошлой ошибкой)
- Int — накопленный интеграл рассогласования (сумма всех Err’ов, кои мы видели)
Мы снова пришли к вопросу, который поднимался в разделе III: этим будут пользоваться техники. Поэтомоу крайне важно не допустить классической ошибки всех реализаций — «размерности коэффициентов как получится». Мы делаем прибор для управления физическим процессом, а значит, модель должна соответствовать.
Произведём вывод всех размерностей. Частично забегая вперёд я уже описал в IV, но теперь раскроем подробнее:
- U — имеет величину в % мощности. Еще точнее — в 2/5 от % мощности, так как у нас таблица идёт через 1/250 от 100%.
- Err — рассогласование, задаётся в градусах. Точнее — через 1/32 градуса.
- Int — интеграл, представляет собой сумму градусов во времени — а значит, имеет размерность градус*сек. Точнее — (1/32 градуса)*(1/25 сек)
- Ti — задаётся через 1/25 сек
- (1/Ti)*Int — после вычисления даёт вклад, имеющий размерность (1/32 градуса).
- dErr — производная, имеет размерность градус/сек, а точнее (1/32 градуса)/(1/25 сек)
- Td — задаётся через 1/25 сек
- Td*dErr — после произведения приводит вклад к размерности (1/32 градуса)
- (. ) — итак, все слагаемые под скобками приведены к размерности (1/32 градуса)
- K — согласует U и (. ), а значит имеет размерность процента-на-градус, точнее (2/5)%/(1/32 градуса)
Вот теперь хорошо видно, зачем выносится за скобки пропорциональный коэффициент — это позволяет оставить диф и инт коэффициенты просто постоянными времени, в результате оператор при настройке оперирует простыми и понятными числами — процентом на градус для пропорциональной и секундами для интегральной и дифференциальной коэффициентами.
А благодаря удобному подбору положения точек и размерностей времени, как мы сейчас увидим, все расчеты производятся практически «в лоб».
Кроме одного — у нас есть величина Ti, а для расчета требуется 1/Ti. Операция деления большой разрядности — очень дорогая. Операция умножения в разы дешевле, поэтому воспользуемся отличной статьёй Division by Invariant Integers using Multiplication. У нас ведь K / Ti / Td меняются крайне редко, а потому мы можем себе позволить как угодно извращаться с ними после их изменения, главное чтобы основной цикл расчетов работал быстро.
Таким образом, вместо Ti для расчетов мы раскладываем в набор Ti_m, Ti_sh1, Ti_sh2; и на каждом цикле производим вычисление:
Теперь производим расчет баланса разрядности. Для этого распишем полную формулу пошагово:
- Eo = E ; Нам нужна прошла ошибка. Ошибки — по 16бит
- E = Y-X ; Вычисляем новое рассогласование. 16bit
- Int = Int + (E+Eo)/2 ; Интегрируем ошибку. При этом считаем полусумму разности (разностная схема). 32bit = 32bit + 16bit
- cI = Int * (1/Ti) ; Считаем интегральный вклад — 32bit * 32bit => 32bit
- cD = Td * (E-Eo) ; Считаем диф вклад — 16*16 => 32bit
- PID = E + cI + cD ; Подскобочное; 16+32+32 => 32bit
- U = K*PID/256 ; Коэфф; 32*16/8 bit => 40bit.
При всех расчетах положение точки вплоть до 7го шага остаётся на 5м справа месте. В последний момент происходит интересный финт ушами. K задаётся через 1/256, соответственно, после умножения точка сдвигается влево до 5+8=13 места, поэтому мы должны у результата отбросить младшие 8 бит. И самый нижний байт результата — нужная нам мощность через 2/5%. Это — еще одна причина, по которой мощность выровнена по шагам в 1/250 — это позволяет результат уложить в один байт и получить легко по таблице нужный результат.
Дальше, помним, что нас интересует мощность только от 0 до 250 — поэтому 7й шаг вычислений идёт очень просто, как только мы получаем отрицательное число — сразу складываем uMin. Как только выяснили что любой старший байт не ноль — сразу складываем uMax. И только если мощность складывается в диапазоне — производим проверку на меньше uMin или больше uMax.
Если вдруг кому интересно:
IX. Применение воздействия.
Итак, у нас есть рассчитанное воздействие, и наша задача — применить его. Для этого работает общий цикл работы с частотой 50Гц. На четном цикле — производится измерение и вычисление, на нечетном — применение воздействия. Таким образом, общая схема получается: выставлена мощность, через одну синусоиду производится измерение и вычисление, еще через одну — применение новой.
X. Подводные камни.
По сравнению с разностной схемой, подводных камней у прямой схемы крайне мало, вот список тех, которые я видел:
- Учет размерностей. Самое важное, и самая частая ошибка. Нельзя просто взять U=K*(Err+Ki*Int+Kd*Diff), без оговаривания ЧТО есть K, Ki, Kd. И с какой точностью. Особенно важно для коэффициента Ki, который имеет размерность обратную времени — если операция идёт в целых числах, НЕЛЬЗЯ просто умножать на него — так как там должно быть ДЕЛЕНИЕ, а обратное число в целых числах не представимо.
- Учет знака. Второе очень важное — учет знака. Все операции должны быть знаковыми, интеграл обязан накапливаться знаковый — так как он не только замещает пропорциональную составляющую, но и позволяет сопротивляться внешним воздействиям, например — выделению тепла самой смеси; и тогда его знак отрицательный.
- Учет переполнения. Нам важно получить либо мощность от 0% до 100%, либо факт того, что вычисленная мощность больше 100% или меньше 0%. Нет нужды производить все вычисления, если мы получили отрицательный подскобочный результат, например. Но при этом важно учесть, что при произведении-сложении может произойти переполнение — и его нужно учесть как «больше 100%», а ни в коем образе не оставить результат после переполнения. Это чревато в первую очередь отсутствием регулирования когда требуется — объект ниже требуемой температуры, а мощность не подаётся
- Учет времени вычислений. Необходимость великоразрядных умножений (при кривой реализации — еще и деления) требует времени, поэтому крайне важно просчитать время выполнения самого худшего варианта вычислений, и оно должно быть меньше, чем свободное время между измерениями. Невыполнение этого условия ведёт к неуправляемому объекту, который «вроде работает, но как-то не так
Источник