Перистальтический насос своими руками перистальтический

Самодельный перистальтический насос: 2 варианта

Перистальтический насос DIY

Откуда взялась идея?

Идея родилась, когда я прочитал комментарии к проекту под названием «Робот разливает напитки», в котором автор писал, что он не хотел использовать насос, чтобы избежать контакта с алкоголем со своими элементами. В этот момент я понял, что знаю типы насосов, в которых перекачиваемая среда не имеет контакта с механизмом, ее количество можно легко контролировать, а конструкция не сложна. Я решил попробовать свои силы при разработке печатного перистальтического насоса.

Как это работает?

При большом упрощении принцип работы такого насоса можно сравнить с экструзией зубной пасты из трубки. Мы сжимаем кусок трубки, в котором находится жидкость, а затем перемещаем (выдавливаем) ее к выпускному отверстию, и готово. В насосе часть гибкого шланга действует как трубка, а шланг сжимается между роликами и внутренней частью корпуса. Для того, чтобы происходило непрерывно в повторяющихся циклах, ролики двигаются по кругу.

Необходимые материалы

  • элементы, напечатанные из приложения;
  • шаговой двигатель (как в принтерах);
  • 5 шт. винтов 5x20mm;
  • 5 шт. подшипников 625 (5×16 мм) (также в шаговых двигателях);
  • 4 шт. винты m3x6mm;
  • 4 шт. винтов m3x30;
  • 1 шт. винт без головки м3 с длиной около 6 мм (для трехручной версии может быть стандартный винт около 8-12 мм в порядке);
  • 5 штук квадратные колпачки м3;
  • гибкий шланг с внешним диаметром 8 мм (или меньше с помощью адаптера);
  • электроника для управления двигателем.

При желании они будут полезны.

  • изоляционная лента
  • шприц «инсулинувка» или другую трубку с внешним диаметром 7-8 мм (таким образом, чтобы она плотно входила в шланг)
  • обратный клапан “аквариум”
  • беспроводный
  • 5 мм сверло
  • 3,2 мм сверло
  • 5 мм (хотя достаточно затянуть винт в отверстие)
  • нож / ножницы

Мы собираем все детали перистальтического насоса

Как только мы собрали все элементы, я предлагаю начать с калибровки отверстий в печатных элементах. Фрезерные отверстия для винтов m3 обычно сверлятся с помощью сверла диаметром 3,2 мм. Я рекомендую тщательно сверлить отверстие для вала двигателя в роторе и проверить, подходит ли оно время от времени. Некоторые отверстия в роторе должны быть резьбовыми для винтов m5, ниже – графическое изображение.

Розетки от гаек в корпусе не имеют полного прохода, это не ошибка. Очень тонкая стенка служит опорой для строительства дополнительной части отверстия, в то время как ее удаление не является проблемой.

Когда у нас все готовые отверстия, мы начнем сборку.

Вверните двигатель на корпус с помощью четырех винтов m3x6, а затем возьмите ротор.

При сборке ротора сначала должны быть размещены подшипники внутри роликов. Отверстия находятся в контакте, поэтому стоит немного смягчить (нагревать) пластик перед сборкой или масштабировать модель, чтобы они вдавили. Я нажал их парами, повернув винт m5, как показано на рисунке ниже.

Вставьте гайку в прямоугольное отверстие в роторе, в которое навинчивается установочный винт.

Все элементы ротора выглядят так, но его пока не нужно поворачивать.

Перед поворотом все установлено на валу, оставляя около 1 мм пространства между корпусом и нижней частью ротора. а затем закрепите, завинтив болт через центральное отверстие в боковой части корпуса.

Теперь мы можем установить ролики и вытащить гибкий шланг через отверстия в корпусе. Концы шланга, выходящего из насоса, хорошо защищены от скольжения. Я сделал это, вставив в них кусок трубки диаметром около 8 мм. Я использовал шприц для инсулинового шприца для донора трубки:

Читайте также:  Маленькая модель самолета своими руками

И мы готовы к первым испытаниям. Если насос вращается, но не работает, вам необходимо немного калибровать внутреннюю часть корпуса. Для этой цели я использовал изоляционную ленту, около 6 полосок друг на друга, я приклеился к внутренней части корпуса на «беговых дорожках». Когда толщина была достаточной, я обрезал ленту поровну с корпусом. Это выглядело так:

Осталось только завинтить крышку корпуса и насладиться самонастраивающимся насосом.

Работа насоса.

Насос был для меня проектом сам по себе, а не частью чего-то большего. Поэтому нет специализированной электроники. Для тестирования я подключил его к драйверу 3D-принтера, снабженному шайбой на чипе DRV8825. Я смог настроить программное обеспечение так, чтобы приблизительно 1 мм перемещения оси переводилось в 1 мл перекачиваемой жидкости. Крепление содержит два разных ротора. Рабочее колесо с тремя роликами более эффективно, оно может работать быстрее, но оно громче и вызывает больше вибраций, а поток жидкости не равномерен. Рабочее колесо с пятью роликами работает гораздо более равномерно, но требует большей мощности двигателя и менее эффективно.

Ниже приводится краткая презентация этой деятельности.
Видео канала TheBloni


Источник: majsterkowo.pl

Перистальтический насос своими руками

Во многих инженерных задачах есть проблема перекачки и дозировки различных жидкостей, для ее решения используют различные насосы: импеллерные, пластинчатые, шестеренные, плунжерные, винтовые, центробежные, перистальтические. Последние получили широкое распространение благодаря следующим преимуществам:

– возможность достаточно точной дозировки;

– отсутствие негерметичных соединений в камере;

– возможность хорошей изоляции перекачиваемой жидкости от узлов насоса.

Периодически встречаются задачи в которых нужно небольшое дозирующее устройство, поэтому мы решили сделать себе его, использовав в основе перистальтический насос. Плюс этот тип насоса хорошо подходит для выполнения его на 3D принтере SkyOne, т.к. ответственные узлы являются стандартными инженерными единицами (валы, подшипники, двигатели, силиконовая трубка), а распечатать нужно только корпусные детали, с чем отлично справится 3D принтер SkyOne.

Итак, конструкция насоса предельно проста: ротор, трубчатая рабочая камера из упругого материала, статор. Создаем модель первого варианта корпуса, отправляем его на печать. Т.к. первый вариант почти всегда тестовый, то для его печати мы использовали пластик HTW PLA+, он дешевый и меньше вреда наносит окружающей среде. Для остальных узлов взяли калиброванный пруток из нержавейки (для валов и штуцеров), стандартные подшипники и вакуумный силиконовый шланг. В качестве привода поставили шаговый двигатель FL42STH47 от фирмы НПФ “Электропривод”.

Для тестов в качестве контроллера использовали SMSD 1.6, очень удобный контроллер, у него есть ручной режим управления (частотный генератор по сути) и можно быстро собрать стенд для тестирования и запустить.

Насос из PLA работает не на полную мощность и двигатель взяли мощнее (FL42STH60) чтобы снизить рабочую температуру, т.к. иначе PLA “потечет”.

Протестировав первую версию внесли изменения и напечатали уже итоговый насос из хорошо зарекомендовавшего себя пластика HTW P-Carbon.

Расход насоса на максимальной скорости получается 30 л/мин. Сейчас насос проверяем на износостойкость, на данный момент он прокачал через себя уже 203 л, и стали видны следы износа трубки (белый налет стертого силикона на стенках).

Источник

Перистальтический насос на шаговом двигателе и ардуино в качестве мозгов

Итак, создал отдельную тему, т.к. прошел весь путь от задумки до реализации перистальтики на шаговом движке
буду размещать информацию постепенно

Что хотел получить
Перистальтический насос с широким диапазоном изменения скоростей, высокой мощностью, высокой стабильностью
Ну и конечно универсальный и удобный в применении

Читайте также:  Как состарить бетон своими руками

Почему на шаговом двигателе:

Использование обычного DC двигателя хоть и проще конструктивно, но имеет следующие явные минусы:
1. Мощность сильно падает при уменьшении оборотов
2. Весьма приблизительно можно регулировать скорость
Шаговый двигатель этих недостатков лишен, мощность у него меньше на высоких оборотах

Еще одна причина как раз кроется в малых оборотах, т.к. очень хочется вместо клапана отбора использовать ту же перистальтику на низких скоростях

Вариант подключения к скетчу 0.98

Peristaltic_98. Перистальтический насос на шаговом двигателе и ардуино в качестве мозгов. Приборы и электр(он)ика.

В любом случае лучше проверить соответствие пинов в скетче, в разных версиях были отличия

Скетч обновил под IDE 1.6.5
Сделал единый скетч под обе клавиатуры, настраивается в самом скетче

Во вложении еще один тестовый скетч для простого тестирования вращения двигателя. Разгон до 100 RPM, вращение

upd
Выложил тестовый скетч с внешним управлением. Немного вроде протестирован. Версия IDE 1.6.7
Подтяжки резисторами 10КОм
пин 13 — тумблер включения внешнего управления, подключайте с подтяжкой к 0
пин А5 — на него 0..5В
добавил
пин А4 — вход дополнительного сигнала работа/стоп, необходима подтяжка к 0
upd
Выложил тестовый скетч с вариантом реализации переключения на внешнее управление обычной кнопкой
для этого нужно изменить параметр
#define KEY_C_MODE 1
upd
Выложил скетч с внешним ШИМ управлением, период 1 сек, IDE 1.8.3
Начало измерения — переход на низкий уровень, окончание — на высокий
Изменена распиновка, схема выше
upd
ШИМ управление оказалось никому не интересно, скетч удалил, схему поправлю на вариант с аналоговым управлением

Источник

Устанавливаем перистальтический насос своими руками

Сделать насос перистальтический своими руками не так просто

В системах бытового водоснабжения используются преимущественно классические центробежные, вибрационные, винтовые насосы, способные обеспечивать хороший напор и поднимать воду с большой глубины. А вот для её обеззараживания путем добавления в воду определенного количества реагентов часто используют насос перистальтический дозирующий.

Он имеет и другие сферы применения и очень востребован в пищевой, химической, фармацевтической и других отраслях промышленности. Подробнее о его устройстве, принципе действия и характеристиках вы узнаете из этой статьи.

Описание устройства

Уже само название агрегата дает понять, что действует он по тому же принципу, что и известный орган пищеварительной системы человека и животных – кишечник.

Как работает насос

Принцип работы перистальтического насоса основан на проталкивании жидкости по гибкой трубке вращающимися роликами. Они прижимают трубку к корпусу, перекрывая её отток назад, и прокатываются по ней до выходного патрубка, через который жидкость покидает устройство.

Принцип действия понятен из рисунка

За роликами тем временем создается разрежение, так как шланг для перистальтического насоса моментально возвращает исходную форму и в него поступает новая порция жидкости.

Устройство насоса

Рабочий шланг размещен в корпусе С-образной формы вдоль его окружности. В центре закреплен вращающийся ротор с роликами, количество которых варьируется от 2 до 8. больше в рабочей зоне насоса нет никаких узлов, жидкость контактирует только со стенками гибкой трубки, никак не воздействуя на механизм.

Фото рабочей камеры

В то же время, из-за отсутствия контакта с деталями насоса, она сохраняет свой состав неизменным, что является обязательным требованием во многих сферах применения подобных устройств.

Типы перистальтических насосов

По исполнению устройства подразделяются на два типа:

  • Моноблочные, в которых все рабочие узлы и элементы управления заключены в один корпус;
  • Модульные, состоящие из нескольких соединенных друг с другом частей.

Мотор и контроллер выполнены в виде отдельных модулей

Также разные модели могут отличаться и другими характеристиками, к которым относятся:

  • Количество прижимных роликов, воздействующих на шланг для насоса перистальтического. Чем больше роликов, тем равномернее происходит перекачивание жидкости.
  • Производительность, которая зависит от мощности двигателя, диаметра и упругости трубки, частоты воздействия на неё роликов и прочих факторов, которые принимаются в расчет перистальтического насоса;
  • Ориентация входного и выводящего патрубков и т.д.

Для справки. Все данные каждой модели отражены в специальной маркировке. Например НП 50-4/60-NR-У2 означает, что это насос перистальтический с диаметром рабочего шланга 50 мм, мощностью редуктора 4 кВт, количеством оборотов рабочего колеса 60 об/мин. NR – тип рабочего шланга, У2 – климатическое исполнение.

Цена устройства зависит от производительности и оснащенности дополнительными устройствами, облегчающими управление насосом, его обслуживание и эксплуатацию.

Читайте также:  Подвал поэтапное строительство своими руками

К ним относятся:

  • Шланги для подключения патрубков;
  • Автоматический блок управления;
  • Регулятор скорости вращения ротора;
  • Устройство для компенсации пульсации (неравномерной и прерывистой подачи жидкости).

Области применения

Устройство и особенности работы таких насосов с одной стороны ограничивают, а с другой расширяют область их применения. Так как они обладают невысоким напором, то их использование для организации водоснабжения из скважины или колодца нецелесообразно. А ограничения по температуре перекачиваемой среды не позволяют применять их и в системах отопления.

Зато отсутствие контакта жидкости с механизмами открывает другие возможности использования этих устройств:

  • Насосы перистальтические пищевые довольно востребованы в производстве продуктов питания и напитков;

Использование в пищевой промышленности

  • Они применяются в фармацевтике и медицине для перекачки различных растворов, которые не должны соприкасаться с материалами, с которыми могут вступить в контакт;
  • С их помощью транспортируют различные агрессивные химические жидкости;
  • В строительстве они используются для подачи абразивных штукатурных растворов к месту работы;
  • Они незаменимы и в промышленном производстве для сбора и перекачки загрязняющих веществ;
  • Перистальтический насос может перекачивать взрывоопасные и легковоспламеняющиеся жидкости, так как в нем отсутствуют трущиеся друг о друга и нагревающиеся при этом части, контактирующие с опасной средой.

Обратите внимание. В большинстве случаев насос перистальтический – дозирующий агрегат, так как он подает перекачиваемые вещества порциями, объем которых зависит от диаметра рабочей трубки и её длины между прижимными роликами. Отрегулировав количество оборотов в единицу времени, можно настроить агрегат на выдачу определенной дозы жидкости.

В системах бытового водоснабжения он тоже может применяться в качестве дозатора для химических реагентов, обеззараживающих воду. Подключить его своими руками не составит труда: нужно просто подсоединить шланги к входящему и выходящему патрубкам и включить насос в сеть.

К его достоинствам помимо уже озвученных можно отнести и способность перекачивать вещества, склонные к кристаллизации, и способность работать «всухую» без риска поломки. Единственный подверженный износу элемент – это гибкий шланг, но его легко заменить в бытовых условиях без привлечения мастеров.

Как сделать перистальтический насос

Чтобы собрать перистальтические насосы своими руками, вам потребуются:

  • Корпус с круглой рабочей камерой;
  • Гибкий и эластичный шланг из силикона, биопрена или неопрена;

Обратите внимание. Производительность насоса будет зависеть от внутреннего диаметра шланга. Если она важна, заранее произведите расчеты.

  • Ролики, закрепленные на валу;
  • Электродвигатель.

Инструкция по сборке проста: в центре корпуса сверлится отверстие для вала, по окружности рабочей камеры вокруг роликов укладывается шланг. Один его конец опускается в емкость с перекачиваемой жидкостью, второй протягивается к месту подачи.

Самодельный перистальтический насос в деревянном корпусе

Заключение

Стоят такие насосы довольно дорого, поэтому их самостоятельное изготовление вполне оправдано. Другое дело, что в быту они применяются нечасто. Вы можете посмотреть видео в этой статье, чтобы лучше понять принцип действия и устройство перистальтического насоса.

Источник

Оцените статью
Своими руками