- Самодельная паровая турбина своими руками
- Как сделать паровую турбину
- Как работает паровая турбина?
- Как сделать паровую турбину в домашних условиях?
- Применение паровой турбины
- Заключение
- Как сделать древесный газогенератор своими руками: самоделки на дровах и опилках
- Как выполнить паровую турбину
- Обзор моделей
- Как не прекращает работу паровая турбина?
- Принцип действия дровяных газогенераторов
- Как выполнить паровую турбину дома?
- Преимущества и недостатки системы
- Использование паровой турбины
- Сфера применения
- Паровая турбина: рабочий принцип 3 разновидностей агрегата
- Изучаем паровые электрические генераторы
- Работа паровой турбины
- Пошаговый монтаж конструкции
- Современная паровая электростанция в действии
- Классификация прибора
- Устройство паровой турбины
- Мини-ТЭЦ с паровыми моторами – реальность XXI столетия
- Теплогенерирующая установка как источник тепловой и электроэнергии
- Сопоставление параметров электро-генераторных установок с паровой турбиной и паровым мотором
- Строение паровой турбины
- Назначение
- Паровая электростанция: специфики работы установки
- Устройство и принцип работы
- Принцип действия
- Отличие от синхронного генератора
- Паровая турбина (видео)
- Область применения
- Домашняя ТЭЦ на микротурбине
- Показатели выбора
- Пиролизные установки мелких производителей
- Конструкция газогенератора
- Как это работает?
- Инструмент, необходимый для сборки агрегата
- Этапы изготовления генератора
- Советы специалистов
- Выводы
- Итоги
- Особенности устройства
- Преимущества
- Принцип работы и особенности
- Что собой представляет газогенератор на дровах
- Немного о газогенераторе
- Котлы длительного горения на дровах для дома
- Цена на топливо растет постоянно
- Походный термоэлектрический генератор на дровах и щепках
- Плюсы данного генератора
- Монтаж
- Как сделать газогенератор на дровах своими руками?
- Необходимые материалы и инструменты
- Критерии для выбора
- Изготовление газгена для автомобиля
- Что представляет собой теплогенератор
Самодельная паровая турбина своими руками
Паровая турбина. Первые упоминания о паровых двигателях относятся к началу первого века до нашей эры. Относительно простой принцип действия сделал этот паровой двигатель основным для человечества на сотни лет. Попробуем изготовить простейшую модель паровой турбины своими руками.
Нам понадобится:
-Консервная банка. Я взял маленькую от томатной пасты.
-Жестяные крышки от банок большего диаметра.
-Жестяная полоска. Ее можно вырезать из боковины банки.
-Заклепки диаметром 3мм и длинной 7 и 14мм.
-Винт с гайкой М5.
-Алюминиевая проволока.
-Свечка. В место свечи лучше использовать таблетку сухого горючего или спиртовку.
Из крышек вырезаем два кружочка. Один подгоняем под размер банки, которая будет паровым котлом. Второй будет турбиной. Его размер выбираем на свое усмотрение, в зависимости от размера всей конструкции. Длинную заклепку, которая будет форсункой с одной стороны обстучать молотком и уменьшить диаметр до 0.6-0.7мм.
Делаем в крышке две дырки: под форсунку и под заливное отверстие. Заливное отверстие располагаем чуть с боку, чтобы турбина не мешала завернуть винт.
Припаиваем к крышке гайку и форсунку из заклепки. Эти заклепки делают из алюминия, по этому придется использовать либо универсальную паяльную жидкость, либо специальный флюс для пайки алюминия. Я использовал Ф59А.
Припаиваем крышку к банке. Надо заметить, что почти все современные консервные банки изготавливаются с дополнительным полимерным покрытием, по этому все детали перед пайкой необходимо зачистить шкуркой.
Изготавливаем турбину. Для этого делим кружок из жести сперва на 4 части, потом каждую четвертинку на 2 части, и наконец каждую дольку на пополам. Надрезаем дольки примерно до середины радиуса. Загибаем лопатки турбины плоскогубцами. В центр припаиваем головку заклепки.
Держатель турбины выгибаем из жестяной полоски в виде буквы П. Ширина подбирается чуть больше длины двух заклепок.
Впаиваем турбину в держатель так, чтобы она свободно вращалась. В качестве оси берем обрезанный центральный стержень заклепки.
Припаиваем держатель с турбиной к крышке над форсункой. Обязательно проверяем чтобы она не за что не цеплялась.
Варианты подставки могут быть любыми. Самое простое — выгнуть из алюминиевой проволоки.
Турбина готова к запуску. Заливать воду будет гораздо проще, воспользовавшись полиэтиленовым флаконом из под капель от насморка. Не стоит наливать воды больше половины объема нашего котла. В качестве уплотнительной шайбы идеально использовать шайбу, вырезанную из свинцовой оболочки кабеля. Можно использовать кожаную. Если нет ни того ни другого, достаточно взять стандартную и облудить.
Теперь осталось развести огонь и дождаться закипания воды. Пар будет под давлением вырываться из форсунки и крутить турбину.
Вид работающей турбины завораживает. Теперь появилось желание изготовить цивильный настольный вариант. Что-нибудь в стиле стим-панк.
Источник
Как сделать паровую турбину
Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.
Как работает паровая турбина?
В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.
На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:
- твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
- полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
- по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
- сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
- вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
- отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.
Примечание. В лучшем случае КПД паровой турбины достигает 60%, а всей системы – не более 47%. Значительная часть энергии топлива уходит с теплопотерями и расходуется на преодоления силы трения при вращении валов.
Ниже на функциональной схеме показан принцип работы паровой турбины совместно с котельной установкой, электрическим генератором и прочими элементами системы:
Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений. Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении. Как это происходит, отражает рабочая схема паровой турбины:
Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор. Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:
1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.
Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.
Как сделать паровую турбину в домашних условиях?
Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.
В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.
Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.
Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.
С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.
Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.
Применение паровой турбины
Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.
В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:
Заключение
К сожалению, конструктивно паровые машины достаточно сложны и сделать дома турбину, чья мощность достигала хотя бы 500 Вт, весьма затруднительно. Если стремиться к тому, чтоб соблюдалась схема работы турбины, то затраты на комплектующие и потраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, проще купить готовый дизель-генератор.
Источник
Как сделать древесный газогенератор своими руками: самоделки на дровах и опилках
Немало мастеров успешно используют это устройство для дома и даже для автомобиля. Если вы заинтересовались этой темой, или появилась идея самостоятельно сделать генератор, мы расскажем как это реализовать на практике.
В нашем материале речь пойдет о принципе действия дровяного газогенератора, достоинствах и недостатках такой системы, а также о том, как самостоятельно собрать такое устройство.
Как выполнить паровую турбину
Идея использования на практике энергии пара далеко не нова, применение паровых турбин в масштабах промышленности давно стало частью нашей жизни. Собственно эти агрегаты, установленные на самых разных электрических станциях и ТЭЦ, на 99% снабжают электротоком наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип изменения энергии тепла в электрическую в своем доме. Для этого применяется рукодельная паровая турбина очень маленьких размеров и мощности. Про то, как ее собрать дома, и пойдёт речь в этой публикации.
Обзор моделей
У нас в государстве имеется несколько предприятий, которые занимаются производством паровых электрических генераторов. В особенности, идет речь о турбогенераторах и ОАО «Росэлектромаш». Рассмотрим несколько моделей, выполненных на двоих фирмах.
ПТ-40/50-8,8/1,3 собой представляет паровую турбину, применяемую в самых разных схемах с утилизацией энергии тепла, и также отходов производственного типа. Среди возможных покупателей этой продукции числятся большие предприятия промышленности и электрические станции.
- показатели номинальной мощности — от 12000 кВт до 80000 кВт;
- показатель давления пара — от 3 до 12,8 МПа;
- показатели температуры пара — от 420 до 550 C;
- производственное давление — от 0,5 до 1,75 МПа;
- отопительное давление — от 0,07 до 0,25 МПа.
П-6-3,4/1,0 — это турбина парового типа, обладающая производственным отбором пара.
- показатели номинальной мощности — от 4000 кВт до 55000 кВт;
- показатель давления пара — от 1,1 до 8,8 МПа;
- показатели температуры пара — от 260 до 445 C;
- производственное давление — от 0,4 до 1,3 МПа.
ПР-13/15,8-3,4/1,5/0,6 применяется во многих ТЭС, и также на фирмах промышленного типа, где есть необходимость в подаче пара заданного показателя.
- показатели номинальной мощности — от 2500 кВт до 35000 кВт;
- показатель давления пара — от 1,2 до 9,3 МПа;
- показатели температуры пара — от 290 до 540 C;
- производственное давление — от 0,4 до 1,75 МПа;
- давление за турбиной — от 0,07 до 0,9 кПа.
Как не прекращает работу паровая турбина?
В сущности, паровые турбины являются важной частью сложной системы, призванной изменить энергию топлива в электричество, порой – в тепло.
Сейчас такой способ считается рентабельным. Технологически это происходит так:
- твёрдое или жидкое горючее сжигается в паровой котельне. В результате рабочее тело (вода) обращается в пар;
- получившийся пар дополнительно перегревается и может достигать температуры 435 ?С при давлении 3.43 МПа. Это нужно для того, чтобы достигнуть самого большого КПД работы всей системы;
- по трубопроводам рабочее тело транспортируется к турбине, где одинаково делится по соплам при помощи специализированных агрегатов;
- сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Подобным образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть рабочий принцип паровой турбины;
- вал генератора, представляющего собой «электрический двигатель наоборот», крутится ротором турбины, благодаря чему формируется электрическая энергия;
- отработанный пар проникает в конденсатор, где от соприкасания с охлажденной водой в теплообменном аппарате переходит в состояние жидкости и насосом опять подается в котел на прогрев.
Примечание. Как максимум КПД паровой турбины может достигать 60%, а всей системы – не больше 47%. Большая часть энергии топлива уходит с потерями тепла и тратится на преодоления силы трения во время вращения валов.
Ниже на практической схеме показан рабочий принцип паровой турбины одновременно с котельной, электрогенератором и прочими системными элементами:
Чтобы не допускать снижения рабочей эффективности, на роторном валу размещается максимальное расчетное количество лопаток. При этом между ними и корпусом статора обеспечивается минимальный просвет при помощи специализированных уплотнений. Обычными словами, чтобы пар «не крутился попусту» изнутри корпуса, все зазоры минимизируются. Лопатка сконструирована поэтому, чтобы увеличение пара продолжалось не только на выходе из сопла, но также и в ее углублении. Как это происходит, отображает рабочая схема паровой турбины:
Нужно сказать, что рабочее тело, чье давление после проникания на лопатки уменьшается, после рабочего цикла в первом блоке не сразу проникает в конденсатор. Ведь оно еще располагает достаточным запасом энергии тепла, а поэтому по трубопроводам пар отправляется во второй блок малого давления, где опять действует на вал при помощи лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может учитывать несколько подобных блоков:
1 – подача перегретого пара; 2 – пространство для работы блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.
Для справки. Частота вращения ротора генератора достигает 30 000 оборотов в минуту, а мощность паровой турбины – до 1500 МВт.
Принцип действия дровяных газогенераторов
Быстрое сжигание дров на открытом воздухе дает, главным образом, некоторое количество полезного тепла. Но совсем иначе древесина ведет себя при так называемом пиролизном сжигании, т.е. при горении в присутствии очень малого количества кислорода.
В такой ситуации наблюдается не столько горение, сколько тление древесины. А полезным продуктом этого процесса является не тепло, а горючий газ.
Газогенераторы некогда активно использовались в качестве поставщика топлива для авто. И сейчас можно изредка встретить машины, работающие на вырабатываемом ими газе:
Использование газогенератора в транспортных средствах
Плюсы установки генераторов газа на авто
Расположение генератора в багажнике малолитражки
Применение производительных генерирующих систем
При медленном горении древесины на выходе получается смесь, содержащая следующие продукты:
- метан (СН4);
- водород (Н2);
- оксид углерода (он же СО или угарный газ);
- различные предельные углеводы;
- углекислый газ (СО2);
- кислород (О2);
- азот (N);
- водяной пар.
Только часть этих ингредиентов является горючими газами, все остальное – это загрязнения или негорючий балласт, от которого лучше избавиться. Поэтому нужно не просто сжечь дерево в специальной установке, но и очистить результат, а также охладить полученную газовую смесь.
В условиях промышленного производства этот процесс включает следующие этапы:
- Сжигание твердого топлива в присутствии малого (около 35% от нормы) количества кислорода.
- Первичная грубая очистка, т.е. отделение летучих частиц в циклонном вихревом фильтре.
- Вторичная грубая очистка, при которой газ очищается с помощью водяного фильтра, используется так называемый скруббер-очиститель.
Самодельные устройства для использования в домашних условиях выглядят проще и места занимают меньше, но принцип их работы, а также конструкция очень похожи. Перед началом изготовления такого устройства необходимо все хорошо продумать, а также составить или найти проект агрегата.
Эта схема позволяет понять устройство дровяного газогенератора: дрова загружаются сверху, попадают в камеру сгорания, куда нагнетается небольшое количество воздуха, и где происходит процесс медленного сгорания топлива и выделение горючего газа
На просторах интернета имеется немало рекомендаций о том, как сделать самодельный древесный газогенератор. Некоторые из них снабжены вполне реальными для воплощения чертежами.
Мастера, которым уже удалось в какой-то мере осуществить этот увлекательный процесс, отмечают, что времени и сил может понадобиться немало. Возможно, придется выполнить не одну переделку и осуществить целый ряд экспериментов, чтобы получить агрегат с приемлемыми характеристиками.
Эта схема, на которой показан принцип работы промышленной газогенераторной установки, позволяет составить представление об отдельных элементах бытового газогенератора
Как выполнить паровую турбину дома?
Много интернет-ресурсов публикует метод, по которому дома и с использованием минимального количества инструментов делается мини паровая турбина из консервной банки. Кроме самой банки потребуется проволока из алюминия, маленький кусочек жести для вырезания полосы и крыльчатки, и также крепежные элементы.
В крышке банки выполняют 2 отверстия и впаивают в одно кусочек трубки. Из куска жести режут крыльчатку турбины, закрепляют ее к полосе, согнутой в виде буквы П. После полосу крепят к другому отверстию, разместив крыльчатку поэтому, чтобы лопасти пребывали напротив трубки. Все технологичные отверстия, созданные в ходе работы, тоже запаивают. Изделие необходимо установить на подставку из проволки, наполнить водой из шприца, а снизу распалить сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струйки пара, вырывающегося из трубки.
Ясно, что эта конструкция служит лишь прототипом, игрушкой, потому как эта паровая турбина, выполненная собственными руками, не может применяться с какой-нибудь целью. Очень мала мощность, а о каком-нибудь КПД и речи не идет. Разве что можно выказывать на ее примере рабочий принцип теплового мотора.
Мини-генератор электрической энергии можно по настоящему сделать из старого металлического чайника. Для этого, помимо самого чайника, понадобится медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и маленький кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет выполнена паровая турбина небольшой мощности.
С кулера снимается электрический двигатель и ставится на одной оси с крыльчаткой. Получившееся устройство устанавливается в круглом алюминиевом корпусе, по размеру он должен подойти взамен крышки чайника. В дно последнего выполняется отверстие, куда впаивается трубка, а с наружной стороны из нее делается полотенцесушитель. Как можно заметить, конструкция паровой турбины очень близка к реальности, потому как полотенцесушитель роль играет пароперегревателя. Второй конец трубки, как несложно догадаться, подводится к импровизированным лопаткам крыльчатки.
Примечание. Очень сложная и сложная часть устройства – это как раз полотенцесушитель. Сделать его из медной трубки легче, чем из нержавеющей стали, однако она долго не будет служить. От контакта с открытым огнём медный перегреватель быстро прогорит, благодаря этому лучше выполнить его собственными руками из нержавеющей трубки.
Преимущества и недостатки системы
Газогенераторы исключительно удобны в использовании. Если агрегат сделан правильно, с соблюдением всех требований техники безопасности, в него можно загружать топливо очень редко. Например, загружать в камеру дрова можно только один раз в день, а если в качестве топлива используется древесный уголь, достаточно будет и одного раза в неделю.
Промышленные модели бытовых древесных газогенераторов исключительно удобны и безопасны, однако стоимость такого устройства обычно бывает очень высокой
Но это относится, скорее, к устройствам промышленного изготовления. Конечно, работу самодельного газогенератора следует тщательно контролировать. Температура горячего газа может быть очень высокой, опасность возникновения пожара также существенно возрастает.
Древесина – доступный материал. В загрузочную камеру газогенератора можно подавать и дрова, и щепу, и прессованные опилки, и любые отходы древесной промышленности, и целлюлозосодержащие материалы. Прекрасно подходит в качестве топлива сухой и легкий древесный уголь. Если размеры бункера позволяют, в него можно загружать дрова даже без предварительной колки, целиком.
Для сжигания в газогенераторе подходят практически любые материалы, содержащие целлюлозу, но важно не забывать о приемлемом уровне влажности такого топлива, чтобы повысить эффективность работы прибора
Полученный в результате горения продукт, горючий газ, можно использовать для решения различных задач: обогрева дома, работы ДВС автомобиля, даже для выработки электроэнергии. Но стоит вспомнить и о “минусах” этого полезного устройства.
Для начала, промышленная модель газогенератора, надежная, безопасная и удобная, стоит достаточно дорого. Не всякий владелец дома или дачи может позволить себе подобный агрегат. Но и создание самодельного газогенератора даже из подручных материалов может вылиться в кругленькую сумму.
Не всегда можно использовать для него любые подручные материалы. Все части агрегата должны быть очень прочными и способными переносить высокую температуру. В обязательном порядке понадобится сварочный аппарат, а также навыки работы с ним. Металл придется и резать, и варить.
Топливо для древесного газогенератора должно иметь такие размеры и конфигурацию, которые позволят ему свободно перемещаться вниз по бункеру к камере сгорания
Рассчитывая, во что обойдется создание самодельного газогенератора на опилках, следует учесть и расходные материалы. Понадобится чугун для создания колосника, вполне возможно, что для изготовления крышки придется найти или купить специальную рессору.
Необходимы также жаропрочные прокладки для люков, для соединения отдельных элементов устройства и т.п. Перед изготовлением газогенератора нужно тщательно все просчитать.
Еще одна статья расходов на газогенератор – это электроэнергия, которая необходима для принудительной подачи воздуха в камеру сгорания. Если по какой-то причине электричество будет отключено, газогенератор не сможет работать.
Такая ситуация недопустима, поскольку снижение температуры горения может привести к загрязнению устройства дегтем. В результате придется останавливать процесс, чистить газогенератор, а потом запускать его снова.
Хотя кажется, что загрузить газогенератор можно чуть ли не любым топливом, все же следует помнить, что оно должно постепенно, по мере сгорания, опускаться вниз по бункеру. Поэтому дрова для генератора следует подготовить, разрубив их на более-менее одинаковые по размеру элементы.
Использование паровой турбины
Налив в чайник воды и поставив его на включеный газ, можно удостовериться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электрического двигателя возникла ЭДС. Для этого к нему стоит присоединить светодиодный фонарик. Кроме питания для электрических лампочек, возможно и другое использование паровой турбины, к примеру, для зарядки аккумулятора мобильного телефона.
В условиях квартиры или приватного дома аналогичная мини-электростанция на первый взгляд покажется простой игрушкой. А вот очутившись в походных условиях и взяв с собой бездымоходный чайник с электрическим генератором, вы сумеете оценить по праву его практичность. Возможно, в процессе у вас получится найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника узнать можно, посмотрев видео:
Сфера применения
Существуют различные модели электрогенераторов на твердом топливе, но все они обладают способностью производить электричество. Мощность стандартного оборудования составляет 50 Вт. Хотя можно приобрести более мощные приборы, но и стоимость их будет гораздо выше. Что касается энергии, то она в полном объеме набирается за 10 минут работы, что очень результативно для такой установки. Кроме этого, стоит добавить, что в качестве топлива можно использовать не только древесину, но и аналогичный материал.
Стоит отметить, что газогенераторная электростанция на дровах может использоваться в следующих целях:
- если централизованная система электроснабжения работает нестабильно, часто отключается или случаются какие-либо другие аварийные ситуации, то самодельный агрегат предоставит резервный источник питания;
- если помещение небольшое, то устройство можно использовать как постоянный источник, мощности вполне хватит для обеспечения всех хозяйственных и бытовых нужд.
Кроме этого, твердотопливный генератор часто используют туристы, рыболовы или охотники. Он позволяет им не только приготовить еду, но и обеспечить неплохое освещение и отопление. Часто используют этот агрегат и дачники, на садовом участке которых отсутствует центральное электроснабжение.
Паровая турбина: рабочий принцип 3 разновидностей агрегата
Паровая турбина приносит в наши дома свет и тепло Паровая турбина – это тепловой мотор, который видоизменяет энергию тепла из пара в энергию механическую вращения вала. При помощи паропровода нагретый свежий пар, поступая из котла, подходит к паровой турбине, после этого большая часть высвобожденной энергии тепла преобразуется в механическую работу.
Изучаем паровые электрические генераторы
Паровой электрический генератор собой представляет нечто схожее с фотоэлектрической панелью, но обладает намного более большой производительностью, уже не говоря о общедоступности таких приборов. Само функционирование аналогичных агрегатов состоит в преобразовании механической силы в электрическую, при помощи нагревания воды до того момента, когда она преобразуется в пар. Собственно эта сила приводит искомый механизм в движение.
Работа паровой турбины
В турбинной установке находящейся в котле, три среды: вода, пар, и также конденсат создают такой себе закрытый цикл. В процессе изменения, при этом, теряется лишь минимальное количество пара и воды. Это кол-во воды регулярно восполняется добавкой в установку сырой воды, которая проходит заранее через фильтр для очистки воды. Там вода обрабатывается химическими составами, нужными для убирания находящихся в водной массе, не необходимых примесей.
Рабочий принцип:
- Отработавший пар с достаточно-таки пониженными давлением и температурой проникает из турбины в конденсатор.
- Там он встречает на пути систему разных трубок, по которой постоянно прокачивается при помощи насоса циркуляционного охлаждающая вода. Берут ее в основном из рек, озер или водоемов.
- Соприкасаясь с холодной поверхностью трубка конденсатора, выработавший пар конденсируется, превращаясь таким образом, в воду (конденсат).
- Постоянно откачиваясь из конденсатора специализированным насосом, конденсат через подогреватель проникает в деаэратор.
- Оттуда насос передает его в паровой котел.
В установке есть также турбонаддув и подогреватель. Его функцией считается необходимость сообщить конденсату добавочное кол-во тепла. Современные паротурбинные установки в основном оснащены несколькими подогревателями. К тому же, для подогрева питательной жидкости нужна, в основном, теплота от пара, который отбирается из промежуточных ступенек самой турбины в границах 15-30% от совокупного расхода пара. Это даёт прекрасное увеличение КПД установки.
Пошаговый монтаж конструкции
Перед тем как приступить к работе по изготовлению твердотопливного генератора, необходимо подготовить инструменты и материалы, которые понадобятся в процессе. Самым главным из них является элемент Пельтье. Его можно купить в готовом виде в специализированном магазине или демонтировать старый портативный холодильник и изъять его оттуда.
Помимо этого, для проведения монтажа понадобится:
- стабилизатор напряжения;
- металлические листы для изготовления корпуса прибора;
- радиатор охлаждения;
- специальный кулер;
- строительные ножницы, предназначенные для резки металла;
- заклепочник;
- электрическая дрель;
- паяльник;
- фурнитура в виде клепок;
- термопаста.
- стабилизатор напряжения;
- металлические листы для изготовления корпуса прибора;
- радиатор охлаждения;
- специальный кулер;
- строительные ножницы, предназначенные для резки металла;
- заклепочник;
- электрическая дрель;
- паяльник;
- фурнитура в виде клепок;
- термопаста.
Если все подготовлено, то приступают к созданию основной части — корпуса, который будет работать на мелких древесных щепках. По форме он напоминает квадратную банку, у которой отсутствует дно. В нижней части проделываются небольшие отверстия, через которые будет поступать воздух, а в верхней располагается специальная подставка, на нее необходимо установить емкость с водой. Затем с одного бока конструкции монтируется элемент Пельтье, и к той стороне, что всегда находиться в холодном состоянии, прикрепляется радиатор, для надежной фиксации используют термопасту.
На следующем этапе занимаются электрической частью. Для устройства идеально подходит стабилизатор, который дополнительно оборудован USB входом. В таком случае электрогенератор сможет производить несколько действий одновременно, например, использоваться для приготовления пищи и в качестве зарядного устройства для мобильного телефона или другого гаджета. Но, чтобы это сделать, необходимо обеспечить гнездо USB электроэнергией, которую будет генерировать элемент Пельтье.
Для этого необходимо спаять стабилизирующую деталь с основным элементом, но при этом нужно основываться на полюса. Чтобы влага не проникала внутрь устройства, его требуется надежно заизолировать.
Современная паровая электростанция в действии
Тепло, отработанного в турбине пара поступает в конденсатор через трубки. Кол-во высвобождаемого тепла велико, и, поэтому, охлаждающая вода должна быть нагрета несущественно. В виду этого, расход у мощных паротурбинных установок весьма велик. Порой он может достигать до 20000 м3/час. Тем более если мощность станции 100000 кВт. В данных случаях охлаждающая подается вода циркулярным насосам из речки и после выполнения собственной функции сливается опять в реку, только ниже места забора.
Действие крепкой струйки пара на лопасти приводит вал во вращение в паровых турбинах
В паровых турбинах строение такое, что возможная энергия пара, пройдя процесс расширении в соплах, превращается в кинетическую энергию, способную перемещаться с высокой скоростью. Мощная струйка пара подается на изогнутые лопатки, которые закреплены по окружности диска, насаженного на вал. Действие крепкой струйки пара на лопасти и приводит вал во вращение.
Чтобы изменить энергию пара в кинетическую, необходимо обеспечить ему свободный выход из парогенератора, в котором он находится, по соплу, в пространство. Плюс ко всему, давление пара нужно больше, чем давление того самого пространства. Необходимо знать, что пар будет выходить с очень большой скоростью.
Скорость выхода пара из сопла зависит от подобных факторов:
- От температуры и давления до увеличения;
- Какое давление есть в пространстве, в которое он вытекает;
- Форма сопла, по которому вытекает пар, также оказывает влияние на скорость.
Вал турбины должен соединяться с валом самой рабочей машины. Какой она будет, зависит от области, в которой применяется рабочая машина. Это может быть энергетика, металлургия, приводы турбогенераторов, воздуходувные машины, нагнетатели воздуха, насосы, водный и ЖД транспорт.
Классификация прибора
Классификация прибора обширная. Сегодня он бывает асинхронным и синхронным, с неподвижным ротором или статором, однофазным, двухфазным и трехфазным, с независимым или самостоятельным возбуждением, с обмотками возбуждения или возбуждением от постоянно действующего магнита.
Обратите внимание! Стоит отметить, что на данный момент пользуются большей популярностью трехфазные модели благодаря вращающемуся круговому магнитному полю, уравновешенности системы, работы в нескольких режимах и высоких уровнях коэффициента полезного действия.
Классификация оборудования
Устройство паровой турбины
Паротурбинная установка – считается главным типом двигателей на современных тепловых и атомных электрических станциях, которые вырабатывают 85 – 90% электрической энергии, потребляемой по всему миру.
Вид и устройство паротурбинной установки
Паровые турбины выделяются большой быстроходностью. Она в основном равна 3000 об. мин., и имеют при этом сравнительно небольшие размеры и массу. В сегодняшней промышленности сегодня выпускают турбоагрегаты разных мощностей, даже такие, где в одном агрегате при высокой экономности более тысячи милионов ватт.
Изобретен этот аппарат издревле. В его создании участвовали многие ученые мужи. В Российской Федерации основоположником строительства паровых турбин в большинстве случаев считают Поликарпа Залесова, который внедрял данные строения в Алтайском крае в начале девятнадцатого столетия.
Паровые турбины разделяют на:
- Конденсационные;
- Теплофикационные;
- Специализированного назначения;
- Оживленные;
- Реактивные;
- Активно-раективные.
Самая популярная – конденсационная турбина – не прекращает работу с выпуском отработанного пара в конденсатор с глубоким вакуумом. От промежуточных ступенек ее турбин, в основном, берется определенное количество пара в целях регенерации. Основное назначение конденсационных установок – выработка электрической энергии.
Мини-ТЭЦ с паровыми моторами – реальность XXI столетия
И. С. Трохин, инженер ВИЭСХ Россельхозакадемии, учитель МОПК НИЯУ «МИФИ»
Нужно ли помнить о первых отечественных паровых моторах (см. справку) в наш век новых технологий? Безусловно. Ведь паровые моторы нынче находят свое использование в энергетике.
В наше время в промышленности и жилищно-коммунальном хозяйстве все более осознается правильность комбинированного производства электрической и энергии тепла на паровых мини-теплоэлектроцентралях (мини-ТЭЦ) (рис. 1), располагаемых очень близко от потребителя. Связано это с неизменным удорожанием электрической энергии, учащением случаев появления аномальных сильных ветров и морозов, приводящих к уменьшению надежности линий электропередачи (обрывову проводов) централизованного электрического снабжения.
Фрагмент структурной схемы паровой мини-ТЭЦ с гарантией работы в режиме тригенерации
Теплогенерирующая установка как источник тепловой и электроэнергии
Потребители, имеющие свои котельные установки, порой восполняют их электрогенераторными установками (электроагрегатами) с паровыми двигателями (в большинстве случаев турбинами) и электрическими генераторами мощностью от нескольких сотен киловатт до единиц милионов ватт. Подобным образом котельные установки, реконструируемые в мини-ТЭЦ, становятся источниками как тепловой, так и электрической (рис. 1, трехфазная линия А–В–С) энергии.
В зависимости от теплопроизводительности паровой теплогенерирующей установке для выработки 1 МВт (100 %) энергии тепла требуется 17–40 кВт (1,7–4 %) электрической энергии [1]. Безусловное давление пара в котлах, допустимое органами Ростехнадзора, как правило не больше 0,7–1,0 МПа (тут и дальше – безусловное).
Промышленным потребителям либо для пароводяных теплообменных аппаратов (накопительных водонагревателей для получения горячей воды) требуется пар с более невысоким давлением – 0,12–0,6 МПа. Благодаря этому электроагрегаты с паровыми турбинами включают параллельно редукционным устройствам или взамен их (рис. 1). Тогда взамен бесполезного дросселирования пара турбинами будет совершаться нужная работа по приводу электрических генераторов. Отработавший пар в данном случае направляется в водонагреватель косвенного нагрева, после этого конденсируется, а конденсат через очистную систему перекачивается насосом назад в котел.
Подобным образом, теплогенерирующая установка становится рентабельным источником тепловой и электроэнергии с большим коэффициентом полезного применения теплоты сгорания топлива (80–85 % и более).
Если потребителю не надо приличное количество тепла, а исключительно горячая вода, к примеру, летом, то мини-ТЭЦ оборудуют еще поглощательными холодильными машинами, работающими на отработавшем в турбине паре. Машины такого типа предоставляют нужное охлаждение воды, которая поступает в систему холодоснабжения для кондиционирования помещений потребителя.
Для круглогодичного непрерывного снабжения электричеством потребителей, в т. ч. оборудования мини-ТЭЦ (насосов, дымососов, освещения, систем автоматики и др.), нужна беспрестанная ее работа. Это реально, к примеру, если электрическую энергию вырабатывать одновременно с выработкой теплоты, нужной для оснащения потребителей горячей водой.
На площадках действующих теплогенерирующих установок делаются и мини-ТЭЦ с увеличенной теплопроизводительностью. К примеру, заменяются старые котлы с давлением сочного пара 1,4 МПа на котлы с давлением перегретого пара 4,0 МПа и температурой 440 °С. При тех же габаритах котлов электрическая мощность такой мини-ТЭЦ становится намного больше.
Но необходимо смотреть на вид применяемого в современных мини-ТЭЦ парового мотора 1 . Это маломощная паровая турбина, которая как правило имеет одноступенчатую конструкцию, потому как не прекращает работу при малых перепадах давлений. Ротор, как вращающаяся часть турбины, состоит из ступицы, которая садится на вал, и набора профилированных лопаток (лопаточный венец). Лопатки делаются из специализированных сплавов и являются ответственными и дорогими элементами турбины. Паровинтовые турбины тоже имеют профилированный ротор, исключительно по типу винта Архимеда.
Еще во времена паровых машин очень простым и не дорогим производительным органом, если сравнивать с турбинной лопаткой, считается поршень.
Первый отечественный паровой мотор, которому в 2011 году выполнилось 75 лет, предназначался для силовой установки самолета и был сконструирован в Московском авиационном техникуме для работы на перегретом паре с давлением 6,1 МПа и температурой 380 °С. Он был сделан на одном из московских заводов и мог развивать до 1800 оборотов в минуту.
Характерными признаками паровых моторов от традиционных паровых машин считаются не только их скоростные качества, но и совсем другой вид парораспределения. Моторы предназначаются для работы с однократным расширением пара. Пар от котла поступает параллельно во все цилиндры, сродни тому, как топливо-воздушная смесь поступает в цилиндры мотора внутреннего сгорания. У традиционных же паровых машин пар идет через все цилиндры постепенно, расширяясь, подобным образом, неоднократно.
Механизмы однократного увеличения пара с появлением поршневой техники стали намного совершеннее, чем механизмы его неоднократного увеличения. Это дало возможность сделать меньше неминуемое и бесполезное падение давления пара изнутри парораспределительных органов и, поэтому, получить более высокооборотный паровой поршневой мотор при одном и том же давлении пара при входе в него.
Сопоставление параметров электро-генераторных установок с паровой турбиной и паровым мотором
Некоторые конструкции паровых машин и моторов ушедшего века были не очень уж несовершенными, как полагают. Представим себе электрогенераторную установку с паровой машиной или мотором и современным электрическим генератором. Потому как паровые машины, в основном, имели очень невысокие скорости вращения вала (до 300 оборотов в минуту), а современные электрические генераторы работают при частотах 1000–3000 оборотов в минуту, то для воображаемой установки нужен еще мультипликатор.
Сравним данную установку с современнейшей паротурбинной. Сделаем это правильно: при соизмеримых давлениях и температурах пара при входе в такие двигатели и соизмеримых противодавлениях пара на выходе. Тогда становится видно (табл. 1), что удельный расход пара на единицу вырабатываемой электрической энергии, а значит, и КПД у конкретных паромашинных или паромоторных установок вполне соизмерим с удельным расходом пара в современных турбоустановках, мощность которых даже в 5 раза больше!
Строение паровой турбины
Паровые турбины возводят в качестве неподвижных конструкций, которые применяют по большей части на фабричных силовых установках или электрических станциях, и транспортных, нужных для работы судовых котлов.
независимо от рабочего принципа, сущность происходящих действий останется неизменной – струйка пара, вытекающая из сопла, будет направляться на лопатки диска, имеющегося на валу, и тот приводится в действие.
Паровые турбины отличают по следующим свойствам:
- Оборотам;
- Количеству корпусов;
- Направлению движения струйки пара;
- Числу валов;
- Размещению конденсационной установки;
- Практичности.
Паровые турбины предоставляют долгую производство механической энергии при температуре охлаждающей их воды до 330 С Цельсия. Также турбины должны исполнять продолжительную хорошую работу с нагрузкой номинальной от 30 до 100%. Что нужно для регулирования распределения электрической нагрузки. Самые популярные конденсационные турбины обязаны давать долгое действие при температуре выхлопного процесса до 700 С.
Назначение
Подобного рода агрегаты есть смысл применять в тех ветвях современнейшей промышленности или бытовой сферы, где встречается очень большое количество парообразований, которые можно применять в качестве преобразователя в электрическую энергию. Собственно резервные электростанции парового типа получили большое применение в котельных, где они создают некую тепловую электростанцию вместе котлом и турбиной.
Подобные агрегаты разрешают значительно экономить на собственной эксплуатации, и также сократить затраты на получение электроэнергии. Собственно поэтому, паровые установки очень часто являются одними из основных рабочих узлов многих электростанций.
Также, если выучить рабочий принцип, и также особенности конструкции аналогичных паровых генераторов, можно попытаться осуществить их собственными руками, при помощи конкретных средств. Однако, о этой возможности пойдёт речь немного позднее.
Паровая электростанция: специфики работы установки
Система регулирования работы турбины при резком сбросе мощности и отключении ТГ от сети, должна лимитировать быстрый заброс скорости вращения ее ротора, и не позволить срабатывания датчика безопасности. Работа турбины не исключают вероятность мгновенного сброса электронапряжения до нуля. Также турбины должны предоставляет возможность возобновить нагрузку до исходной, или любой иной цифры в регулировочном диапазоне, при скорости не меньше 10% от номинальной мощности за секунду.
Паровые турбины применяют по большей части на фабричных силовых установках или электрических станциях
Обязательные рабочие режимы:
- С отключенным подогревателем большого давления;
- С нагрузкой в рамках своих нужд в границах 40 минут после сброса;
- На холостом ходу 15 минут после сброса электро- нагрузки;
- Для проведения проверки на холостом ходу 20 часов после пуска турбины;
- Служебный срок рабочих турбин между ремонтами обязан быть не меньше 4 лет;
- Новые агрегаты имеют гарантию в пять лет;
- Период работы на отказ у паровой турбины не меньше 6000 часов;
- Показатель готовности у установки не меньше 0,98.
Паровая турбина имеет служебный срок больше тридцати лет. Как исключение из правил лишь быстроизнашивающиеся детали и детали.
Устройство и принцип работы
Генератором называется электромашина, которая занимается преобразованием механической энергии в токовую электроэнергию. В большинстве случаев используется для этого вращательный тип магнитного поля. Состоит аппарат из реле, вращающегося индуктора, контактных колец, терминала, скользящей щетки, диодного моста, диодов, токосъемного кольца, статора, ротора, подшипников, роторного вала, шкива, крыльчатки и передней крышки. Нередко в конструкцию входит виток с электромагнитом, который осуществляет выработку энергии.
Генератор своими руками
Важно отметить, что генератор бывает переменного и постоянного тока. В первом случае не образовываются вихревые токи, работать аппарат может при экстремальных условиях и обладает пониженным весом. Во втором случае генератор не нуждается в повышенном внимании и имеет большее количество ресурсов.
Бывает генератор переменного тока синхронным и асинхронным. Первый это агрегат, который работает как генератор, где количество совершаемых вращений статора равно ротору. Ротор формирует магнитное поле и создает в статоре ЭДС.
Обратите внимание! В результате создается постоянный электрический магнит. Из преимуществ отмечают высокую стабильность создаваемого напряжения, из недостатков — токовую перегрузку, поскольку при завышенной нагрузке, регулятор повышает ток в роторной обмотке.
Устройство синхронного аппарата
Асинхронный аппарат состоит из короткозамкнутого ротора и точно такого же статора, как и предыдущей модели. В момент вращения ротора асинхронный генератор индуцирует электроток и магнитное поле создает синусоидальное напряжения. Поскольку он не имеет связи с ротором, то возможности в том, чтобы искусственно регулировать напряжение и ток, нет. Эти параметры изменяются под электрической нагрузкой на стартерной обмотки.
Устройство асинхронного аппарата
Принцип действия
Любой генератор действует по электромагнитному индуктивному закону, благодаря наводке электротока в замкнутой рамке пересечением вращающегося магнитного поля, создаваемое с помощью постоянных магнитов или обмоток. Электродвижущая сила попадает в замкнутый контур из коллектора и щеточного узла вместе с магнитным потоком, вращается ротор и вырабатывает напряжение. Благодаря подпружиненным щеткам, которые прижимаются к пластинчатым коллекторам, передается электроток к выходным клеммам. Далее он идет в сеть пользователя и распространяется по электрооборудованию.
Принцип работы
Отличие от синхронного генератора
Синхронный бензиновый генератор не перегружается из-за переходных режимов, которые связаны с пуском под нагрузкой из потребителей подобной мощности. Он является источником реактивной мощности, в то время как асинхронный ее потребляет. Первый не боится перегрузок при поставленном режиме благодаря системе авторегулирования через связь, которая обратна току с напряжением в проводе. Второй имеет нерегулируемую искусственно силу сцепления электромагнитного роторного поля.
Обратите внимание! Важно понимать, что асинхронная разновидность более популярна благодаря простой конструкции, неприхотливости, отсутствию надобности в техническом квалифицированном обслуживании и сравнительной дешевизне. Он ставится тогда, когда: нет высоких требований к частоте с напряжением; предполагается работать агрегату в запыленном месте; нет возможности переплачивать за другую разновидность.
Синхронная разновидность
Паровая турбина (видео)
Паровая турбина собственными руками – аппарат, который считается сердцем почти что любой электрические станции, действует по принципу превращения энергии из паровой в механическую. Однако такую машину вполне можно создать и дома. Разумеется это будет мини-устройство, и быстрее всего ваша рукодельная турбина будет газовая или воздушная, однако данная модель также пригодится в обиходе как и паровая турбина для ТЭЦ. Правильно разработанные схема, чертеж и рисунок смогут помочь вам достигнуть хорошего результата от самоделки.
Область применения
Генератор переменного тока — многофункциональный аппарат, благодаря которому энергию можно передавать на большие расстояния и при этом быстро ее перераспределять. Кроме того, она превращается в световую, тепловую, механическую и другую энергию по инструкции. Прост в изготовлении. Поэтому область их применения обширна. Сегодня используются такие устройства везде: как в промышленности, так и в условиях быта. Ими оснащается мощный мотор.
К примеру, электро и ветрогенератор будет полезен в то время, когда будет отключена сеть вольт, произойдет авария на электростанции, нужна будет дополнительная энергия в двигателе.
Бензиновый и магнитный генератор, благодаря небольшому весу и компактности, можно транспортировать и использовать в сельском хозяйстве, на даче, в лесу. Он послужит оборудованием быстрого реагирования и поможет создать аварийное освещение.
Область применения
Домашняя ТЭЦ на микротурбине
Можно ли дома иметь свою хорошую, небольшую систему теплогенерации и электричества? Компания MTT Micro Turbine Technology BV (Нидерланды) на данный вопрос ответила утвердительно, создав установку EnerTwin на основе микротурбины, одновременно генерирующей 3 кВт электричества и 15 кВт тепла. Микро-ТЭЦ EnerTwin разработана для замены котлов отопления для малого бизнеса и подсобных хозяйств. Главное внимание уделяют невысокой себестоимости, надежности, уменьшению шумового уровня и невысоким рабочим затратам.
Смотрится МикроТЭЦ как простой домашний прибор
Микро-ТЭЦ одновременно вырабует (когенерирует) тепловую и электроэнергию в местах, где они две популярны. В основном, ключевым потребителем энергии микро-ТЭЦ считается система обогрева. Электричество, в данном случае, становится побочным продуктом, производимым по очень невысокой себестоимости. Важное достоинство микро-ТЭЦ в том, что энергия топлива применяется почти что полностью. В этом состоит важное отличие от обыкновенных электростанций, где большое количество тепла теряется в атмосферу. Более того, микро-ТЭЦ экономит на передаче электрической энергии от электростанций до конечных клиентов, благодаря уменьшению потерь. Любое превышение выработки электрической энергии от микро-ТЭЦ можно экспортировать в электрическую сеть (в странах Европы, Соединённых Штатов и др.). Есть специализированные программы стимулирования для поставщиков электрической энергии. К примеру в Германии, для тех кто поставляет остатки генерируемой электрической энергии в сеть, дополнительно даются льготы. Это выполняет плюсы когенерации еще большими.
Распределенная система генерации энергии на базе микро-ТЭЦ EnerTwin
Методика
EnerTwin система микро-ТЭЦ выстроена на основе микротурбины. Рабочий принцип состоит в следующем:
Главная схема рабочих узлов микро-ТЭЦ
- Окружающий воздух поступить и сжимается в компрессоре.
- Сжатый воздух заранее греют в рекуператоре.
- В топке, добавляется тепло при горении топлива.
- Горячий сжатый газ становится шире в турбине, что обеспечивает энергию механического типа для нагнетателя воздуха и генератора. «Инвертер» видоизменяет энергию, подаваемую генератором в напряжение и частоту электрические сети ( 230 ?50 Гц).
- Расширенный газ после турбины нагревает воздух, сжатый компрессором в рекуператоре (см.2).
- Остаточное тепло, оставшееся в выходном газе после рекуператора, поглощается в теплообменном аппарате с водой.
- Горячая вода применяется для централизованного отопления и /или горячего водообеспечения.
Устройство внутри EnerTwin
Турбина
Газовые турбины известны собственной большой мощностью, невысоким весом и рабочими затратами. Применение технологии турбонаддува, разработка которой финансировалась государством, приводит к невысокой себестоимости производства. Газотурбинные элементы оптимизировались для использования в турбогенераторе. Скоростной турбогенератор при скорости вращения 240 тысяч оборотов за минуту имеет чистый электрический к.п.д. 15% (19% результативность мощности на валу). Одновременно с низкими расходами, это обеспечивает большой потенциал для экономически продуктивных микро-ТЭЦ систем.
Новая идея
При разработке EverTwin компания применила нетрадиционный подход для разработки хорошего, очень малого газотурбинного мотора. Данный проект построен на вращающейся топке в комбинировании с практичным компрессором.
Результативность газовой турбины в большой мере зависит от потерь из-за утечек потока, потерь тепла и трения. Эти потери становятся еще существенней при попытках создать турбины микро-мощности, масштабируя простые газовые турбины. При уменьшении турбины соотношение щелей и размеров лопастей турбины уменьшается. Также, при уменьшении размера (уменьшается количество Рейнольдса) вязкие потери на трение возрастают, чем в традиционных турбогенераторах. В результате , есть основательное ограничение на результативность микротурбин с обыкновенной конфигурацией.
В концепции вращающейся топки указанные выше масштабные эффекты не так видны. Основной спецификой считается монолитный ротор.
Монолитный ротор микротурбины
Монолитный ротор в разрезе
По большей части , турбина состоит из одного ротора, в котором размещены центробежный нагнетатель воздуха, вращающаяся топка и реакционная турбина. У вращающейся топки, нагнетатель воздуха не имеет диффузора и турбина не имеет лопаток.
Электрический генератор
Успешный высокочастотный генератор на постоянных магнитах видоизменяет энергию механического типа микротурбины в электрическую энергию. Генератор полностью интегрирован в ротор турбины, избегая расходов и потерь от добавочных подшипников и муфт.
Параметр шума
Микротурбины излучают только высокочастотный шумовой фон, который вероятно будет хорошо заглушен. Если сравнивать с обыкновенными генераторами и турбинами, EnerTwin имеет очень небольшой уровень шума.
Специфика EnerTwin
- Электрическая мощность (макс/мин) — 3,0 /1,0 кВт
- Теплопроизводительность (макс/мин) — 14,4 /5,0 кВт
- Электрический КПД (макс/мин) — 15 /10 %
- Самый большой суммарный КПД — 87% (зависит от показателей системы обогрева, к примеру температуры обратного трубопровода)
- Частота вращения ротора (макс/ мин) — 240 / 180 тысяч оборотов в минуту
- Употребление газа (38.5 MJ/nm3, макс/мин) — 1,87 /0,84 nm3/h
- Горючее — сетевой газ
- Параметры системы обогрева (подающая/обратная труба) — 80 ?60 °С
- Шумовой фон — 55 dB(A) 1m
- Размеры — 970 x 610 x 1120мм
- Вес — 225 кг
- Диаметр дымоотвода — 100мм
- Электрическая сеть — 230 В/50 Гц
Основное использование
По мнению разработчика основное использование микро-ТЭЦ:
- Малые и средние предприятия;
- Отрасли с сравнительно небольшим стойким требования тепла;
- Конференц-залы;
- Большие дома для жилья;
- Дома с бассейном и /или сауной;
- Загородные дома;
- Школы, спортивные школы, спортивные залы, студии и кружки;
- Коммунальные строения;
- Автозаправки;
- Гостиницы и рестораны;
- Магазины;
- Лечебные центры;
- Дома престарелых;
- Правительственные строения, например залы, полицейские станции, библиотеки.
Сертификация
В феврале 2013 года EnerTwin получили документ CE для полевых испытаний. Получение этого сертификата собой представляет существенную веху в формировании EnerTwin. Документ был предоставлен по KIWA после всесторонних испытаний работы турбин на газообразном топливе и вопросам безопасности труда. Свидетельство KIWA на самом деле для абсолютно всех стран Европейского Союза, а еще в Норвегии, Хорватии, Турции и Швейцарии.
Европейский документ безопасности KIWA
Где взглянуть?
МТТ в скором времени будет принимать участие на выставках:
- Hannover Messe в Германии с 7 по 11 апреля 2019 года, павильон Holland Energy House, холл 27 G24
- MCE в Милане с 18 по 21 марта 2019 г. в павильоне 5, стенд №. E02 10.
Показатели выбора
Сейчас есть довольно широкий выбор различных электрогенераторов, работающих на пару, благодаря этому необходимо очень с большим вниманием подходить к вопросам выбора.
Чтобы этот выбор был обдуманным и взвешенным, нужно смотреть на следующие показатели:
- Мощность паровой установки (тепловая и электрическая).
- Необходимо также посмотреть на то, с какой скоростью происходит вращение роторов генератора и турбины.
- Вид используемого тока — тут речь идет об однофазном или трехфазном виде установок. Во многих случаях, применяется собственно трехфазная система.
- Показатели давления пара не только в сжатом виде, но также и в свободном состоянии.
Чуткое отношение к данным параметрам даст возможность значительно облегчить выбор, таким образом помогаю потребителю получить необходимый ему аппарат. Чтобы было более воочию, рассмотрим несколько моделей паровых электрических генераторов, пользующихся самым большим спросом.
Пиролизные установки мелких производителей
Если вам не под силу изготовить пиролизный агрегат самостоятельно, а импортные модели слишком дороги, то можно приобрести установку мелкосерийного производства. В последнем случае необходимо выполнить ряд правил:
- Потребовать лицензию на производство данного оборудования. Лицензия не является полной гарантией приобретения надёжной и эффективной продукции, но риск покупки недоброкачественного оборудования существенно снижается.
- Оценить внешний вид агрегата, качество сварных швов. При возможности необходимо заглянуть под декоративную обшивку.
- Если в производстве использовалась керамика, то необходимо уточнить цену замены форсунки, которая может составлять до трети стоимости пиролизного агрегата.
- Определить, для какой системы отопления предназначено данное оборудование – открытой или закрытой.
Например, газогенераторные котлы бастион, по отзывам владельцев, достаточно нормально работают в кирпичных домостроениях даже в регионах с холодными зимами. Хотя длительность горения на одной закладке в зимний период равен примерно 5-6 часов.
Необходимо приобретать с некоторым запасом по мощности. Это объясняется тем, что потребители далеко не всегда могут достать идеально сухое топливо.
Газогенераторные либо пиролизные (по принципу работы) котлы пользуются спросом благодаря высокой экономии топлива в сочетании с привлекательным КПД.
Конструкция газогенератора
Аппарат может быть любых размеров 100 – 1000 литров (от требуемой мощности).
Разделяются по процессу газификации:
В поперечной схеме газы по прибору проходят горизонтально. Снизу вверх – в прямой схеме, а в обращённой – сверху вниз.
Устройство газогенератора АСС-2000
Наиболее оптимальный вариант обращенного принципа газификации. Ёмкость имеет двойные стенки (что пожаробезопасно), а горячий газ дополнительно нагревает и подсушивает топливо, находящееся над камерой сгорания.
Как это работает?
Стандартный элемент Пельтье – это пластина с двумя выходами для подключения к сети, собранная из кубиков разного металла, например медь и константан, медь и никель, свинец и константан и т. д.
Пластина пропускает через себя электрический ток, и с одной стороны нагревается, а с другой становится холодной.
В представленном электрогенераторе применяется обратный принцип: одна сторона элемента нагревается от горящего топлива (в данном случае – щепок и дров), другая охлаждается любым теплообменником – жидкостным или воздушным, и на проводах происходит выработка постоянного электротока, который уже можно использовать по усмотрению.
Больших показателей мощности ожидать не приходится, даже в заводских печах-генераторах (в них, как правило, два элемента), вырабатывается до 60 Вт. Самодельные обычно выдают 5 Вт (хватит, чтобы зарядить сотовый телефон или подключить фонарик со светодиодами).
Электроток в такой печи – лишь побочный продукт, основная энергия от сгорания дров не пропадает впустую, а служит для отопления помещения (хватит на небольшой дом, дачу или палатку).
Инструмент, необходимый для сборки агрегата
С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий вихревой теплогенератор. Его называют прибором Потапова.
Однако даже для сборки этого устройства необходимо оборудование:
- Дрель и набор сверл для нее;
- Сварочный аппарат;
- Машинка для шлифовки;
- Ключи;
- Крепеж;
- Грунтовка и малярная кисть.
Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.
Этапы изготовления генератора
Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.
Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.
Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.
Собирать конструкцию можно двумя способами:
- Используя болты и гайки;
- При помощи сварочного аппарата.
В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.
Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.
Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции. При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя.
Смотрим видео, этапы сборки теплогенератора:
Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.
После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.
Эта модель одна из самых простых. Но если есть желание регулировать температуру теплоносителя, то устанавливают запирающее устройство. Также могут использоваться электронные устройства контроля, но следует учитывать, что стоят они достаточно дорого.
Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.
Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.
Смотрим видео, конструкция после изготовления:
Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.
Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.
Советы специалистов
На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.
Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют:
- Все детали выполнять из толстых материалов;
- Их поверхности должны быть окрашены;
- Стоит сразу сделать несколько запасных крышек с различными размерами отверстий, чтобы было удобно подбирать диаметр.
После сборки нужно включит генератор и засечь время, которое ему потребуется для нагрева воды. И если оно вас не устраивает, то внесите изменения в конструкцию.
Выводы
Создавая домашний газогенератор для отопления дома или работы ДВС, можно получить приспособление, позволяющее отчасти заменить природный газ и вырабатывать электричество, уменьшающее расход дров за счет увеличения КПД и повышающее время горения одной порции твердого топлива. Время горения одной закладки древесины в топку газового генератора при использовании полученного газа как дополнительного энергоносителя, достигает 8–20 часов. Эксплуатация оборудования достаточно простая, если не считать периодической очистки, а замены требуют только фильтрующие элементы.
Несмотря на эти плюсы, устанавливать самодельный древесный газген на автомобиль нецелесообразно Экономия окажется не такой значительной, как снижение уровня комфорта использования транспортного средства и непредсказуемые последствия для двигателя внутреннего сгорания. Единственным веским аргументом в пользу такого решения, могут быть лишь проблемы с приобретением бензина.
Приемлемый вариант – сборка своими руками газогенератора для частного дома. В этом случае прибор станет источником газа для отопительного котла, газовой плиты и небольшой домашней электростанции.
Итоги
Выше приведены лишь несколько способов изготовления газогенератора своими руками. Но все они позволяют получить по-настоящему надежное и эффективное устройство, обеспечивающее следующими преимуществами:
- — более низкими затратами топлива (КПД котла — от 90%);
- — продолжительным процессом горения. Для дров он составляет около 20 часов, а для древесного угля — около 7-8 суток. Возможностью применения любого топлива, будь это древесина, солома или жмых.
- В ряде случаев в топку можно класть целые поленья (при соответствующих размерах бака);
- — надежностью и простотой эксплуатации. Чистка поддувала или дымохода если и должна производиться, то редко.
Особенности устройства
Подобные отопительные устройства имеют две камеры сгорания. В первой происходит разложение твердотопливного горючего материала. Во второй – сжигание полученного пиролизного газа (она может располагаться по отношению к отсеку газификации снизу, сверху или сбоку).
Классическая газогенераторная печь состоит из следующих элементов:
- корпус (в него устанавливают все элементы конструкции);
- бункер заполнения (туда помещают твердое топливо – дрова или отходы древесной промышленности);
- камера дожигания (в ней происходит сгорание пиролизного газа);
- решетка колосниковая (она служит для удержания твердотопливного материала);
- дверки (с их помощью загружают в оборудование дрова и удаляют остатки продуктов горения);
- воздушные заслонки (благодаря им можно управлять подачей кислорода в рабочую зону прибора).
В зависимости от типа печи, ее особенностей газогенератор либо нагревает рубашку теплоносителя, либо отдает тепловую энергию окружающей среде, либо совмещает обе эти функции.
Преимущества
Газогенераторные приборы отопления имеют массу достоинств, что обусловило их широкое применение для обогрева дачных домов, коттеджей, хозяйственных построек. Их КПД многократно превышает эффективность работы традиционного отопительного оборудования. У печей подобного типа можно регулировать температуру теплоносителя, управлять их работой. В этом случае просто увеличивают или уменьшают подачу кислорода в топку.
Отапливать такие устройства можно не только дровами и отходами обработки древесины, но и каменным углем, торфом и, что самое удивительное, линолеумом.
Самым распространенным типом дровяного газогенератора является пиролизная печь. Газ из нее не отбирается, а полностью сжигается, в результате чего образуется тепловая энергия.
Принцип работы и особенности
Один из главных вопросов, возникающих у человека, не сталкивающегося с дровяным газогенератором – это что за принцип работы у оборудования и для чего оно нужно. Использование такого прибора для получения газа позволяет решить несколько задач:
- создать систему резервного электроснабжения частного дома;
- получить комфортные микроклиматические условия во время отопительного сезона и одновременного получения газа для других целей (например, приготовления пищи);
- обеспечить работу двигателя внутреннего сгорания автомобиля.
Нагревая твердое топливо до 1100 °C и ограничивая в зону его горения доступ кислорода, можно сделать оборудование пиролизным. Основной принцип работы газогенератора заключается в превращении с помощью процесса пиролиза содержащейся в древесине целлюлозы в олефины (пропилен и этилен). Получившиеся газы очищаются системой фильтров от сажи, золы и других примесей, а затем охлаждаются. После охлаждения продукты оказываются во вторичной камере сгорания, где продолжают гореть, нагревая стенки котла. Для улучшения процесса горения в эту же топку подается воздух. О технических моментах подробно рассказано в видео ниже.
КПД пиролизных котлов выше по сравнению с обычными дровяными печами и котлами, и потраченные на создание самодельного газового генератора время и средства в перспективе окупятся. Тем более что дровяной газогенератор можно сделать не только отопительным, но и водонагревательным оборудованием. Для этого нагревающиеся в процессе горения дров стенки котла соединяются с теплообменником.
Пиролизный котел (газогенератор) с бойлером косвенного нагрева
Что собой представляет газогенератор на дровах
Газогенератор имеет довольно простую конструкцию, так как все процессы, идущие в нем, основаны на пиролизном горении дров. То есть, идея газогенераторов базируется на пиролизных котлах, где дерево сгорает в недостатке воздуха, выделяя при этом большое количество различных газов. Далее будет приведена информация о строении этого приспособления.
- Корпус. Его обычно изготавливают из листовой стали. Все элементы соединяются сваркой. Вообще корпус может иметь как цилиндрическую, так и прямоугольную форму хотя форма цилиндра является более распространенной, да и смотрится эстетично. В нижней части сваривают ножки, на которых конструкция будет стоять.
- Бункер. Его также изготавливают из листовой стали с малым содержанием углерода. Как и корпус, бункер также может иметь форму цилиндра или прямоугольника. Он вносится внутрь корпуса, и крепится к стенкам корпуса с помощью болтов. Также должна быть крышка, закрывающая отверстие сверху, которое ведет в бункер. В качестве уплотнителя используют асбест или какой-нибудь другой материал.
- Камера сгорания. Она располагается внизу, и изготавливается обычно из стали с повышенным содержанием хрома. Здесь происходит горение твердого топлива в условиях недостаточного воздухоснабжения. Между внутренними стенками корпуса и камерой сгорания имеются асбестовые шнуры. На боковых стенках камеры сгорания находятся несколько отверстий, или как их еще называют, фурмы для подачи воздуха, через которые воздух подается в камеру сгорания. Эти фурмы соединяются с воздухораспределительной емкостью, которая сообщается с атмосферой. Когда воздух выходит из этой емкости, он преодолевает обратный клапан. Функция этого клапана заключается в том, чтобы заблокировать выход образовавшегося при горении дров газа наружу.
- Колосниковая решетка находится в нижней части устройства. Ее функция заключается в поддержании раскаленного топлива. Также через многочисленные отверстия этой решетки зола, образовавшаяся в ходе горения топлива, попадает в зольник.
- Загрузочные люки. В конструкции бытовых газогенераторов имеются три таких люка. Первый находится сверху, ее крышка откидываются горизонтально. В качестве герметизации при закрытии и уплотнения используются асбестовые шнуры. В современных моделях в зоне крепления люка можно найти специальную пружину-амортизатор, который автоматически приходит в действие, если внутри устройства давление превысило определенную норму. Под действием этой пружины люк опрокидывается. Сбоку конструкции имеются еще два загрузочных люка. Первый из них расположен на уровне зоны восстановления. Этот люк используется для загрузки топлива в эту зону. Нижний люк располагается на нижнем конце устройства, на уровне зольника. Он применяется для ее очистки. Газ, образовавшийся в ходе горения твердого топлива, выводится из верхней части конструкции. Для этого там имеется специальный патрубок для вывода газа.
Далее будут рассмотрены процессы, в ходе которых из древесины выделяются горючие газы. В целом, всю конструкцию можно разделить на несколько зон:
- Зона подсушки. Она находится в верхней части конструкции, сразу же под загрузочным люком. Здесь топливо быстро сушится благодаря тому, что температура в этой зоне достигает порядка 190 градусов по Цельсию.
- Зона сухой перегонки. Она расположена ниже зоны сушки. Иссушенное топливо здесь подвергается обугливанию благодаря тому, что температура достигает до 500 градусов. В ходе этих процессов из топлива удаляются смолы и некоторые кислоты органического происхождения.
- Зона горения. Находится в нижней части. Топливо попадает сюда и сгорает при температуре в 1200 градусов. Через специальные фурмы подается воздух. В ходе горения выделяются угарный и углекислый газы.
- Зона восстановления. Газы, выделившиеся в ходе горения топлива, поднимаются вверх, и достигают зоны восстановления. Сюда через специальный люк загружают уголь, который держится на колоснике. Угарный и углекислый газы реагируют с углем. Когда во взаимодействие вступают углекислый газ и уголь, то в ходе реакции образуется угарный газ. Но в угле имеется вода, которая также проявляет активность по отношению к газам. В результате всех этих реакций образуются угарный газ, углекислый газ, водород, метан, некоторые летучие непредельные углеводородные соединения, азот. Эта смесь газов очищается от всех примесей, затем смешивается с воздухом. Это и есть конечный результат. Полученная смесь газов может применяться для бытовых нужд.
Немного о газогенераторе
Газогенератор представляет собой специальную установку, цель которой преобразовывать газ в электричество, путем его сгорания в камерах под высоким давлением. Почему именно газ? Тут все просто. На самом деле его теплоемкость несколько выше, нежели у бензина и дизельного топлива, а цена намного меньше стоимости последних. Газовый генератор крайне удобен для дома, поскольку не выделяет токсических веществ. Даже самый маломощный агрегат способен обеспечить все потребности в электричестве, встречающиеся в быту, расход топлива при этом минимален.
Пользователи газогенераторов подчеркивают, что его необходимость в тех местах, где есть перебои с электричеством, катастрофическая. Однако, наиболее доступные и дешевые модели имеют заоблачную для многих стоимость – от 35 000 рублей. Естественно, окупаемость агрегата со временем наступает, но не у каждого есть такая сумма. Поэтому, те кто дружат со строительством и знакомы с принципами создания генераторов, могут сделать газген своими руками.
Собрать газогенератор несложно только тогда, когда имеется общее представление и есть под рукой схема или чертежи. При его создании всегда имеются риски, что установка не сможет быть исправной и приносить ожидаемую пользу. Рентабельность саморучного создания агрегата напрямую зависит от навыков создателя, а также от качества комплектующих. Если есть хоть малейшая доля сомнения, от затеи лучше отказать, отдав предпочтение заводской установке с гарантией качества. Как говорится, и овцы целы, и волки сыты!
Возможно,
покупка уже готового генератора убережет от пустой траты денег, а также оградит от негативных последствий, возникающих при работе.
Котлы длительного горения на дровах для дома
Твердотопливные тепловые установки не являются новшеством. В различных вариациях они применяются с незапамятных времен. Пока сжигание топлива в огромных количествах не представляло ни для кого проблемы, они не теряли актуальности. Однако в современных условиях, такое расточительное отношение к ресурсам неуместно. Из-за этого получили широкое распространение котлы отопления на дровах длительного горения. Для их функционирования в рабочем режиме требуется в разы меньше дров, чем в прямоточных печах и котлах.
Твердотопливный котёл длительного горения в разрезе
Установка представляет собой печь с двумя камерами. В одну из них битком загружают дрова. Они медленно тлеют сверху вниз при минимальном доступе кислорода. Одной порции дров достаточно для 12 – 15 часовой работы котла. В результате этого тления выделяется пиролизный газ, который принудительно подается через форсунки во вторую камеру. Там он подвергается интенсивному горению. Ведь в этот отсек воздух поступает в достаточном количестве. При сгорании выделяется большое количество тепла, которое нагревает жидкость внутри контура.
Чтобы увеличить эффективность работы отопительного котла, необходимо позаботится об утеплении дома
Кроме экономичности, эти котлы обладают высокой экологичностью, так как способны расщеплять органические вещества из топлива почти без остатков. Поэтому дым из таких печей полностью безопасен для человека.
Полезный совет!Чтобы получить максимальную выгоду от котлов отопления на дровах длительного горения, нужно приобретать комбинированные их варианты. Такие установки способны работать еще и на обычном природном газе. Переключение между режимами в них осуществляется автоматически.
Строение твердотопливного котла длительного горения
Цена на топливо растет постоянно
Высокая стоимость бензина и дизеля, а также дорожающий газ вынуждают переходить на более экономичные виды топлива.
Принцип действия здесь прост. Двигатель работает не на бензине, солярке или обычном газе (метане, пропане), а на газе, выделяемом при горении дерева.
Аппараты, которые позволяют выработать такой газ, носят название газогенераторов.
Кроме бытовой сферы, они пользуются большой популярностью и давно применяются в промышленности.
Что касается способов изготовления, то они различаются. В данной статье рассмотрим наиболее популярные из них.
Читать далее: Как закрыть батарею гипсокартоном своими руками фото
Принципиальная схема работы газогенератора.
Походный термоэлектрический генератор на дровах и щепках
Есть в мире такая интересная вещь, как Элемент Пельтье — термоэлектрический преобразователь с обратимым эффектом. Его устройство очень просто — это пластинка с множеством соединенных пар разнородных полупроводников, закрытых в теплопроводящем корпусе. Если пустить по элементу ток — одна из сторон пластинки начнет греться, а другая — охлаждаться. Работает это и в обратную сторону — если охлаждать одну сторону, и нагревать другую — элемент начнет вырабатывать электричество, тем большее, чем больше разница температур между сторонами.
За свою универсальность, простоту и малые размеры, «пельтьешки» горячо полюбились любителями самодела, выживальщиками и оверлокерами, которые не перестают придумывать им применение как в качестве охладителя (например, для CPU), так и термоэлектрогенератора. Например — представленный Маркусом Райтом из Уфы — простой походный термогенератор на дровах и щепках, дающий на выходе напряжение 5V/500mA через преобразователь с USB-выходом — этого должно быть достаточно для зарядки телефона или фонарика на природе. А главное — собрать этот агрегат можно из компьютерного хлама и подручных средств, и ниже мы расскажем как!
Для сборки устройства понадобится: 1. Элемент Пельтье — хорошим выбором будет TEC1-12710 12V 40x40mm 2. Повышающий преобразователь напряжения с USB-выходом (входной ток 1-5V, выходной — 5V). 3. Радиатор для процессора с площадью соприкосновения не меньше 40x40mm (больше — лучше). 4. Блок питания компьютера, желательно нерабочий — из него понадобится только корпус. Вместо БП можно использовать щепочницу, и вообще модифицировать конструкцию по желанию. 5. Термопаста и инструменты.
Приобрести Элемент Пельтье можно на радиорынках или в магазинах электротехники, или на ebay и aliexpress (ключевое слово — «peltier»). У нас — дороже, на Aliexpress партия из 5шт. TEC1-12710 обойдется в $25, хотя можно найти дешевле. Также, можно заказать TEC1-12706 — его характеристики похуже, но партия в те же 5шт. обошлась в $10. Ниже приведены характеристики используемого в генераторе элемента:
В TEC1-12710 — 127 пар полупроводников, он рассчитан на 10A и оптимальное подаваемое напряжение — 12V (допустимо, но нежелательно превышение до 14-15V. При извлечении напряжения нагревом и охлаждением — элемент выдаст напряжение значительно ниже среднего — около 1V с пассивным охлаждением одной стороны. Поэтому нужно использовать повышающий преобразователь — когда на вход подается минимальное допустимое напряжение в 1V, он повышает и стабилизирует его, давая на выходе стабильные 5V. Большинство подобных устройств оснащены светодиодным индикатором — когда он загорится — значит на выходе есть 5V и можно работать.
Стабилизатор несложно собрать самому — хотя, стоит он около $2-3 и продается интернет-магазинах. В описываемом устройстве используется стабилизатор, заказанный из Китая вместе с ЭП.
Важно: Элементы Пелетье чувствительны к высоким температурам — нежелателен длительный нагрев элемента выше 160°C, иначе поплывут места спая полупроводников и он выйдет из строя. Также опасны короткие замыкания на поверхности элемента и между контактами.
1. Сперва нужно подготовить корпус БП. А именно — выпотрошить всю начинку и снять порты питания. Снизу на задней стенке, где будет крепиться радиатор, выпилите или пробейте 4 маленьких отверстия — они нужны для крепления радиатора на металлической проволоке. Также, при необходимости, пробейте отверстия для доступа кислорода снизу. Во всём остальном — корпус компьютерного БП идеально подходит для термогенератора.
2. Соблюдая полярность, припаяйте контакты ЭП к преобразователю, а сам преобразователь желательно заизолировать, для защиты от повреждений.
3. Теперь нужно реализовать охлаждение холодной стороны ЭП — активное, или пассивное. Пассивное — это просто радиатор, рассеивающий тепло. Активное — это когда тепло, переданное радиатору, рассеивается кулером, либо когда радиатор охлаждается холодной водой/снегом (зима — лучшее время для фанатов ЭП) — вариантов много. В любом случае, пассивное охлаждение допустимо в ветреной местности, но КПД устройства будет ниже.
«Холодная» сторона ЭП — это та, на которой набито название (протестировать можно, пустив на контакты ЭП ток). Для лучшего теплоотвода обильно смажьте холодную сторону ЭП термопастой — подойдет и легендарная КПТ-8, купленная на радиорынке, но лучше использоваться современные аналоги (спрашивайте в магазинах компьютерной техники). После — установите радиатор на холодную сторону ЭП, и готовое изделие плотно (используя металлическую проволоку) закрепите на стенке корпуса.
Термогенератор на Элементах Пелетье готов!
Работает сей агрегат очень просто: щепки или дрова, горящие внутри корпуса, нагреют одну из сторон ЭП, пока другую будет охлаждать радиатор. Разница температур начнет расти — а вместе с ней вырастет и вырабатываемое элементом напряжение. Когда на преобразователе загорится лампочка — к устройству можно подключать ваши девайсы, и те медленно, но верно будут заряжаться. А если иногда охлаждать водой радиатор — то заряжаться они будут ещё быстрее!
Доставка новых самоделок на почту Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Плюсы данного генератора
Чем проще конструкция, тем она надежнее, это можно сказать и о представленном виде выработки электроэнергии.
Здесь нет трущихся между собой деталей, которые могли бы выйти из строя. Поэтому, генератор на дровах:
- долговечен и надёжен;
- работает бесшумно;
- использует доступное топливо;
- лёгкий, переносной – может быть до 1 кг.
Печь-генератор – это ноу-хау последних лет. Она будет интересна как экспериментаторам – любителям, так и путешественникам, поклонникам походов и рыбалки. Да и кому не хотелось бы иметь доступ к электричеству во время отключения света.
Для самодельной печи все детали можно купить весьма недорого – в пределах 500 руб. (Через интернет китайские элементы Пельтье можно заказать примерно за 300 руб.)
Монтаж
Газ, вырабатываемый установкой, ядовит и не имеет запаха. Поэтому автомобиль нельзя заводить в гараже, как вариант, он запускается на бензине и лишь позже переключается на газогенерацию.
- Все монтажные работы нужно проводить вне жилых строений.
- Специальная мастерская для работ должна иметь хорошую вентиляцию.
- Соединение трубопровода должен выполнять профессионал – утечка может дорого стоить!
- Если газогенераторной установкой планируется отапливать дом, монтируется система отвода дыма.
- Под установкой делается несгораемое основание. Не допускается расположение топочной камеры вблизи стен из горючих материалов.
Как сделать газогенератор на дровах своими руками?
Для изготовления агрегата обращенного принципа работы потребуются:
- две ёмкости большего и меньшего объема;
- листовой металл для шейкера (подвижные колосники);
- водопроводные трубы;
- вентилятор;
- круглый длинный бак для циклона.
Изготовление по шагам:
- Две бочки около 200 литров объемом, вставляются одна в другую. Во внутренней будет камера сгорания.
- Чтобы подавать воздух для горения вваривается двухдюймовая труба.
- Сверху для загрузки топлива устраивается люк и в верхней же части располагается труба для отвода готового газа.
- Снизу центральной емкости подвешиваются колосники таким образом, чтобы их снаружи можно было пошевелить, тем самым очищая от шлака. И поддувальная дверца для чистки.
- Отдельно сваривается из другой емкости или трубы диаметром 20-40 см центробежный фильтр очистки.
- Радиатор охлаждения изготавливается из двух толстых труб (около двух дюймов), соединенных между собой более тонкими. Высота может достигать двух метров и более, подбирается индивидуально по размерам и КПД газогенератора.
Фильтр тонкой очистки – это емкость наполненная:
- керамзитом;
- опилками;
- металлическими шайбами или чем-то подобным.
Необходимые материалы и инструменты
Для того чтобы своими руками сделать генератор газа, необходимо иметь следующие инструменты и материалы:
- Бочка для корпуса конструкции.
- Старый газовый баллон.
- Фильтры для очистки газа, а также клапаны. Их можно найти в строительных магазинах.
- Болты (несколько штук).
- Аппарат для сварки.
Напоследок, следует отметить, что процесс изготовления генератора не содержит особых сложностей, поэтому любой желающий может смастерить его самостоятельно. Главное – нужно руководствоваться приведенной здесь пошаговой инструкцией.
- Как сделать ветрогенератор на 220В своими руками самодельный ветряк
- Пресс для топливных брикетов как своими руками сделать станок для прессования опилок
- Газогенератор своими руками как сделать самодельный агрегат
- ТВ антенна своими руками как сделать самодельную телеантенну в домашних условиях
Критерии для выбора
Если вы все-таки решили приобрести агрегат, то вам понадобятся некоторые критерии, на которые вы сможете опираться при выборе.
Выбор упрощается тем, что для домашнего использования подходят только печи-генераторы, а для промышленного использования берут крупногабаритные электростанции. Обычно мощность таких станций варьируется от 100–200 кВт.
Выбирая устройство, обратите внимание на то, какую площадь, оно будет обслуживать, и на какую мощность нужно рассчитывать.
Схема работы электрогенератора с элементом Пельтье
Чтобы рассчитать количество необходимого топлива, потребуется спланировать степень эффективности и использования агрегата, от этих показателей будет зависеть объем контейнера для дров.
Газогенераторы можно классифицировать по типу горения топлива. Так, выделяют три вида:
- Генераторы прямого горения. В конструкциях этого типа воздух в камеру сгорания подается снизу через колосниковую решетку. Патрубок для вывода газа находится в верхней части конструкции. Такие конструкции предназначены для сжигания угля или антрацита.
- Генераторы опрокинутого горения. В таких конструкциях воздух в камеру сгорания подается не снизу, как в первом случае, а прямо на уровне зоны горения. Зато газы выводятся на уровне зольника, и могут применяться для подогрева вновь загруженного топлива.
- Генераторы горизонтального горения. В конструкциях этого типа воздух также подается через специальные формы на уровне зоны горения. Отбор газа производится также сбоку через патрубок, расположенный за специальной решеткой, на уровне зоны горения. Зона, в которой происходит извлечение газов, в этом случае мала. Она сосредоточена главным образом между фурмой и решеткой, за которой имеется патрубок для вывода газа.
Изготовление газгена для автомобиля
Перед тем как сделать работоспособный газогенератор для автомобиля, предлагаем ознакомиться с некоторыми рекомендациями:
- Организовать подачу силового газа в современном авто с инжектором – задача непростая. Придется менять настройки контроллера (прошивку), иначе мотор на древесном топливе работать не будет. Нужна машина со старой системой топливоподачи – карбюратором.
- Чем больше мощность и рабочий объем двигателя, тем выше производительность должна быть у газогенератора. Соответственно, он вырастет в размерах.
- Чтобы уместить установку в багажник легкового авто, потребуется вырезать часть днища. Если вы не хотите затрагивать кузов, то сразу планируйте ставить дровяной генератор с фильтрами и охладителем на прицеп.
- Для изготовления камеры газификации, где температура превышает 1000 °С, применяйте низкоуглеродистую толстую сталь (4—5 мм).
- Чтобы уменьшить содержание смол в газовой смеси, делайте камеру с горловиной, как это показано на чертеже.
Важный момент. Не стоит увеличивать диаметр камеры газификации (на чертеже он равен 340 мм) с целью добиться большей производительности. Прирост получится мизерный, а качество переработки древесины ухудшится. А вот высоту 183 см выдерживать не обязательно, разве что вы поставите агрегат на прицеп или на раму грузовика. Топливный бункер и зольник можно укоротить.
Для сборки внутренней части автомобильного газогенератора (бункера) сгодится старый пропановый баллон, ресивер от грузовика КаМАЗ или толстостенная труба. Учитывая, что диаметр стального сосуда равен 300 мм, остальные размеры нужно пропорционально уменьшить. Исключение – камера газификации, ее минимальный диаметр составляет 140 мм. На кожух и крышку генератора пойдет металл толщиной 1.5 мм. Последняя уплотняется графитно-асбестовым шнуром.
Варианты охладителей горючей смеси из автомобильного радиатора и батареи отопления
Сопутствующие агрегаты – фильтры и охладители – делаются так:
- Циклон сварите из отработавшего огнетушителя или отрезка трубы диаметром 10 см, как это изображено на чертеже. Входной патрубок приделайте сбоку, выпускной – сверху.
- Охладитель силового газа лучше сделать из стальных труб в виде змеевика. Есть и другие варианты: использование старых конвекторов, батарей отопления и радиаторов.
- Фильтр тонкой очистки изготовьте из любой цилиндрической емкости (например, бочки), наполненной базальтовым волокном.
Более детальную информацию о сборке газогенератора своими силами вы получите, посмотрев видео:
Для розжига и запуска газгена вам потребуется вентилятор в виде улитки, устанавливаемый в моторном отсеке (для испытаний сойдет и бытовой пылесос). К нему требование простое: детали, соприкасающиеся с газовой смесью, должны быть металлическими. Топливная магистраль, ведущая к карбюратору, прокладывается под днищем авто и выполняется из стальной трубы.
Для справки. Если вместо дров использовать древесный уголь, то примесей на выходе газогенератора будет значительно меньше, что хорошо для двигателя. Такое топливо выжигается из дерева по простой технологии – в закрытой бочке или яме.
Бункер для древесного угля помещается в багажник «Жигулей»
Что представляет собой теплогенератор
Оборудование этого класса представлено двумя основными видами приборов:
Однако не так давно появились и кавитационные модели, которые возможно в скором будущем станут достойной заменой агрегатам, работающим на привычных видах топлива.
Различие между статорными и роторными приборами состоит в том, что в первом жидкость нагревается при помощи сопел, расположенных на входном и выходном отверстиях агрегата. У второго типа генераторов тепло образуется в процессе оборотов насоса, приводящих к завихрениям воды.
Смотрим видео, генератор в работе, замеры:
По эксплуатационным качествам вихревой теплогенератор собранный своими руками несколько превосходит статорный. У него теплоотдача на 30% больше. И хотя сегодня на рынке такое оборудование представлено различными модификациями, отличающимися роторами и соплами, суть их работы от этого не меняется. Исходя из этих параметров собирать теплогенератор своими силами лучше все же вихревого типа. Как это сделать будет рассмотрено ниже.
Источник