Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.
Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.
Схема стабилизатора показана на рисунке.
Это, так называемый параметрический стабилизатор. Состоит он из двух частей: 1 — сам стабилизатор на стабилитроне D с балластным резистором R б 2 — эмиттерный повторитель на транзисторе VT.
Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.
Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их: Uвых — это напряжение и Imax — это ток.
Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых. Это напряжение определяется по формуле:
Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.
Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.
Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно. Смотри сам:
Если мы берем Uвых=14 вольтам, то получаем P max =1.3*(17-14)*1=3.9 Вт. А если мы примем Uвых=1.5 вольта, то P max =1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор. Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор.
Фу, ну вроде с этим справились. Пошли дальше.
Считаем сам стабилизатор.
Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).
I б max =I max / h21 Э min
h21 Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?
I б max =1/25=0.04 А (или 40 мА). Не мало.
Ну давайте будем теперь искать стабилитрон. Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.
Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали. Полезли опять в справочник.
По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.
Теперь посчитаем сопротивление и мощность балластного резистора R б .
R б =(Uвх-Uст)/(I б max +I ст min )
где Uст — напряжение стабилизации стабилитрона, Iст min — ток стабилизации стабилитрона.
R б = (17-14)/((1.33+5)/1000) = 470 Ом.
Теперь определим мощность этого резистора
P rб =(U вх -U ст )2/R б .
P rб =(17-14)2/470=0,02 Вт.
Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.
Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).
Итак, смотрим на схему выпрямителя.
Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт. Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.
где Iн — максимальный ток нагрузки, Uн — напряжение на нагрузке, Kн — коэффициент пульсаций.
В нашем случае Iн = 1 Ампер, Uн=17 вольтам, Kн=0,01.
C ф =3200*1/14*0,01=18823.
Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.
Осталось выбрать выпрямительные диоды или диодный мост.
Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.
Необходимое максимальное обратное напряжение считается так
U обр max =2U н , то есть U обр max =2*17=34 Вольта.
А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.
Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы. Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.
Источник
Линейные стабилизаторы напряжения на транзисторах и интегральных микросхемах.
Онлайн расчёт элементов схем линейных стабилизаторов с фиксированным и регулируемым выходным напряжением.
Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на устройства, называемые стабилизатором напряжения. Стабилизатор напряжения — это преобразователь электрической энергии, предназначенный для поддержания уровня выходного напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, а также в идеале — температуры и иных внешних воздействий.
Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на интегральных микросхемах. А зря!
Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки. Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения. Рис.1 а) Простейшая схема б) С эмиттерным повторителем в) С регулируемым вых. напряжением
Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных токов. От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока рассчитывается по формуле: Rст = (Uвх — Uст)/ Iвх , а Iвх должен удовлетворять условию Iвх ≥ Iн. макс + Iст. мин , где Iн. макс — максимальный ток в нагрузке при заданном выходном напряжении, а Iст. мин — минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника. В стабилитронах отечественных производителей параметр Iст. мин , как правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом случае ориентироваться на значение тока из datasheet-ов «Izk» (значение при котором стабилитрон обладает максимальным импедансом) и увеличить эту величину в 2. 3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона является тестовый ток, при котором измеряются основные характеристики полупроводника.
Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность, используется дополнительный усилитель тока — эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное сопротивление повторителя Rвх ≈ Rн x (1 + β) , т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем напряжение на выходе стабилизатора будет на 0,6. 0,7 В (на 1,2. 1,4 В для составного транзистора) меньше напряжения стабилизации стабилитрона .
Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора). Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением — не меньшим, чем входной ток эмиттерного повторителя. Сдобрим пройденный материал калькулятором.
ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ ЛИНЕЙНОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ
Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2). Рис.2 Схемы компенсационных линейных стабилизаторов напряжения
Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 — устройством сравнения выходного напряжения, поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение, а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой (земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение — всё то же самое, только наоборот. Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными на Рис.1, но в связи наличием обратной связи имеют и свои недостатки. В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими характеристиками и при этом — очень простых и удобных в реализации.
Существует два типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения. В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.
Типовая схема включения большинства регулируемых микросхем приведена на Рис.3.
Рис.3
Формула для расчёта выходного напряжения имеет вид Vout = Vref x (1+R2/R1) + Iadj x R2 , причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.
Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать? Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства. И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) — очень даже немаловажен. Поэтому — либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.
Для начала — справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.
Тип
U вх макс В
І вых макс А
І вых мин мА
U вых мин В
U вых макс В
КР142ЕН11
-40
1,5
10
-1,2
-37
КР142ЕН12
40
1,5
10
1,2
37
КР142ЕН18
-40
1,5
10
-1,2
-37
КР142ЕН22
35
5
10
1,25
34
КР142ЕН22А
35
7,5
10
1,25
34
КР142ЕН22Б
35
10
10
1,25
34
LT1083
35
7,5
10
1,2
34
LT1084
35
5
10
1,2
34
LT1085
35
3
10
1,2
34
LM117
40
1,5
5
1,2
37
LM137
-40
1,5
10
-1,2
-37
LM138
35
5
10
1,2
32
LM150
35
5
10
1,2
33
LM217
40
1,5
5
1,2
37
LM317
40
1,5
5
1,2
37
LM317LZ
40
0,1
5
1,2
37
LM337
-40
1,5
10
-1,2
-37
LM337LZ
-40
0,1
10
-1,2
-37
LM338
35
5
10
1,2
32
LM350
35
3
10
1,2
33
TL783
126
0,7
0,1
1,25
125
Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.
ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ МИКРОСХЕМ — СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ
Если не хотите, чтобы вдруг «раздался мощный пук» — послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.
Отдельно хочу остановиться на МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.
Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.
Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.
Рис.2
Чем хорош КТ315 в данном включении? На обратно смещённом переходе КТ315 при напряжении 6 — 7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.
Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950, LP2951, LM2931, LM2936 и им подобные.