- Как собрать осциллограф своими руками — 3 рабочие схемы, советы по монтажу, видео
- Осциллограф на PIC18F2550 своими руками — схема, инструкция по сборке
- Схема осциллографа на PIC18F2550
- Необходимые детали для сборки осциллографа на PIC18F2550 и прошивка
- Цифровой осциллограф RS232 для ПК
- Схема цифрового осциллографа для компьютера
- Необходимые радиоэлементы
- Программное обеспечение
- Монтаж
- Осциллограф своими руками на AVR — инструкция по сборке, характеристики
- Схема осциллографа на AVR
- Необходимые радиоэлементы
- Прошивка ATmega32 и настройка
- Использование
- USB ПРОБНИК-ОСЦИЛЛОГРАФ
- Схема usb осциллографа-пробника
Как собрать осциллограф своими руками — 3 рабочие схемы, советы по монтажу, видео
- Осциллограф на PIC18F2550
- Цифровой осциллограф для ПК
- На AVR — инструкция по сборке, характеристики
- Видео
Рассмотрим 3 рабочие схемы осциллографов. Первый прибор собран на микроконтроллере PIC18F2550. Второй осциллограф — цифровой, в основе третьего — микроконтроллер AVR. Поговорим о каждом по порядку.
Осциллограф на PIC18F2550 своими руками — схема, инструкция по сборке
Осциллограф на PIC18F2550 измеряет среднее, максимальное, минимальное, пиковое напряжения и пересечение нулевого уровня. Осциллограф имеет встроенную функцию триггера, который может быть использован для остановки сигнала для его детального изучения. Масштаб времени для отображения может быть легко изменён функцией changeTimeDivision.
Осциллограф измеряет напряжение в пределах 0–5В, 0–2.5В и 0–1,25. Основным недостатком этого осциллографа является низкая частота дискретизации (
60 кГц), а также тот факт, что входы ограничены ограничениями АЦП микроконтроллера. Тем не менее, это очень хороший прибор и первым мы рассмотрим именно его схему.
Схема осциллографа на PIC18F2550
Исходники и прошивку можно будет скачать ниже. Теперь давайте детальнее остановимся на каждом блоке схемы.
Напряжение поступает с 9-вольтовой батареи на интегральный стабилизатор напряжения TC1262-5.0V для обеспечения стабильных 5В для питания микроконтроллера и дисплея. На выходе стоит 1мкФ конденсатор.
Графический ЖК дисплей AGM1264F с разрешением 128х64 пикселей оснащен встроенными контроллером KS0108. Он имеет светодиодную подсветку и генератор отрицательного напряжения для управления.
Вывод A0 настроен на аналоговый вход. Обратите внимание, что сопротивление источника сигнала влияет на напряжение смещения на аналоговом входе. Максимально рекомендованное сопротивление составляет 2.5 кОм.
Микроконтроллер PIC18F2550 работает на частоте 48 МГц от внутреннего генератора. R1 представляет собой нагрузочный резистор, необходимый для работы. C1 является стабилизирующим конденсатором. Компонент пометкой «RES» является 20 MHz резонатором.
Выводы USART должны быть подсоединены к RS-232 конвертеру для подключения к ПК для обновления прошивки. После этого он может быть отключен.
Необходимые детали для сборки осциллографа на PIC18F2550 и прошивка
- МК PIC 8-бит (IC1) — PIC18F2550
- Линейный регулятор (IC2) — TC1264, 5 Вольт.
- Конденсатор (С1) — 0.22 мкФ.
- Электролитический конденсатор (С2) — 1 мкФ.
- 2 резистора (R1, R3) — 3.3 кОм и 5 Ом соответственно.
- Подстроечный резистор (R2) — 10 кОм.
- Кварцевый резонатор (RES) — 20 МГц.
- LCD-дисплей — AGM1264F.
- Батарея питания (G1) — 9 В
- 3 разъёма — JP1 для подключения дисплея, JP2 для обновления прошивки (RS-232) и JP3 для входа аналогового сигнала.
Микроконтроллер должен быть прошит файлом «SAC_tinybld18F2550usb _20MHz_115200_48MHz». Его можно скачать ниже.
Видео, как работает осциллограф на PIC18F2550:
Цифровой осциллограф RS232 для ПК
Рассмотрим простое решение для создания цифрового компьютерного осциллографа. Устройство построено на базе восьмиразрядного процессора PIC12F675.
Схема цифрового осциллографа для компьютера
Ниже представлена структурная схема осциллографа:
Процессор работает на частоте 20 МГц. Микроконтроллер непрерывно измеряет входное напряжение, преобразовывает его и отправляет цифровое значение на последовательный порт компьютера. Скорость передачи данных последовательного порта — 115кБит и, как показано на следующем рисунке, данные сканируются и отправляются с частотой около 7,5 кГц (134 мкс).
Вот принципиальная схема самого цифрового осциллографа:
Основа схемы — микроконтроллер PIC12F675 (микросхема U2), который работает с тактовой частотой 20 МГц кристалла Y1. J1 — стандартный разъем для подключения питания в 9–12 В, которое затем стабилизируется на U1 до 5 В для питания процессора.
- Узнайте, как сделать щуп для осциллографа своими руками
После U2 в схему добавляется простой преобразователь TTL уровня с последовательным портом RS232 персонального компьютера. Он построен на базе транзистора BC337 (Q1) и резисторов R1 и R3. Вход 5 микроконтроллера ведет к переключателю S1. В своей основной позиции (1–2) прибор переключается в режим осциллографа постоянного тока (DC измерений), который способен отображать входной сигнал 0–5В. Во второй позиции — в режим осциллографа переменного тока. В этом положении максимальное напряжение — от -2,5 до +2,5 В. Конденсатор С6 подойдет керамический 22000nF, чтобы наблюдать низкие частоты без особых искажений.
При необходимости можно добавить дополнительные входной аттенюатор (сплиттер), или ОУ.
Необходимые радиоэлементы
- Линейный регулятор (U1) — LM78L05.
- МК PIC 8-бит (U2) — PIC12F675 (675-I/P).
- Биполярный транзистор (Q1) — BC337.
- 6 конденсаторов — С1, С2, С5 (3х0.1 мкФ); С3, С4 (2х22 пФ); С6 (22 мкФ)
- 4 резистора — R1, R3 (2х1 кОм) и R2, R4 (2х270 кОм).
- Кварцевый резонатор (Y1) — 20 МГц.
- Переключатель (S1)
- 3 разъема — J1 питания, J2 RS232, J3 входа сигнала.
Программное обеспечение
Для управления на Windows доступна простая программа на Visual Basic. Её можно скачать в архиве ниже.
Программа запускается сразу и ожидает появления данных на последовательном порте COM1. Слева — четыре ползунка, используемые для измерения периода и напряжения сигнала. Затем идут вкл/выкл синхронизации, поля для масштабирования или изменения значений размера выборки.
Монтаж
При сборке можно не делать печатную плату, а смонтировать все в небольшой пластиковой коробке навесным монтажом. Корпус должен иметь отверстия для разъема RS232 переключателя, входного гнезда и гнезда питания.
Прошивку для процессора можно скачать в конце статьи. Биты конфигурации (fuse) в процессе программирования должны быть установлены следующим образом:
Вот фото готового прототипа цифрового осциллографа:
Ниже вы можете скачать исходник, прошивку и ПО для Windows.
Осциллограф своими руками на AVR — инструкция по сборке, характеристики
Характеристики осциллографа на AVR:
- Частота измерения: 10 Гц–7.7 кГц.
- Макс. входное напряжение: 24В AC/30В DC.
- Напряжение питания: 12В DC.
- Разрешение экрана: 128×64 пикселей.
- Область экрана осциллограммы: 100×64 пикселей.
- Информационная область экрана: 28×64 пикселей.
- Режим триггера: автоматический.
Рассмотрим проект осциллографа с использованием МК PIC18F2550 и графического LCD с контроллером KS0108. В качестве среды разработки здесь использована WinAVR, которая основывается на open source AVR-GNU компиляторе и прекрасно работает с AVR Studio 4. Графическую библиотека разработана специально для данного проекта.
При измерении прямоугольного сигнала, максимальная частота, при которой можно увидеть хорошую осциллограмму составляет около 5 кГц. Для других форм сигналов (синусоида или треугольный сигнал) максимальная частота составляет около 1 кГц.
Схема осциллографа на AVR
Принципиальная схема AVR-осциллографа приведена ниже:
Напряжение питания схемы составляет 12 вольт постоянного тока. Из этого напряжения, в дальнейшем получается еще 2 напряжения: +8.2В для IC1 и +5В — для IC2, IC3.
- Схема светодиодного осциллографического пробника
Устройство может измерять входное напряжение от +2.5В до -2.5В или от 0 до +5В, зависящее от позиции переключателя S1 (выбор типа входного тока: постоянный или переменный). При использовании пробника 1:10, входное напряжение соответственно может быть увеличено в 10 раз. Кроме того, переключателем S2 можно установить дополнительно деление напряжения на 2.
Необходимые радиоэлементы
- Операционный усилитель (IC1) — LM358.
- LCD-дисплей (IC2) — DEM128064A (128×64, контроллер KS0108).
- МК AVR 8-бит (IC3) — ATmega32.
- Линейный регулятор (IC4) — LM7805.
- Стабилитрон (D1) — 1N4738A, 8.2В.
- Выпрямительный диод (D2) — 1N4007.
- 7 конденсаторов — C1 (470 нФ); C2 (27 пФ); C4, C7, C9 (3х100 нФ); C5, C6 (2х22 пФ).
- 2 электролитических конденсатора — C3 (22 мкФ 16 В) и C8 (100 мкФ 25 В).
- 7 резисторов — R1, R2, R4 (3х1 МОм); R3, R5 (2х390 кОм); R6 (56 Ом); R7 (220 Ом).
- 2 подстроечных резистора (P1, P2) — 10 кОм и 22 кОм соответственно.
- Кварц (X1) — 16 МГц.
- 3 переключателя (S1, S2, S5).
- 5 кнопок (S3, S4, S6–S8) — замыкающие.
- 2 разъёма (K1, K2) — 2 контакта вход сигнала, 2 контакта питание.
Прошивка ATmega32 и настройка
Файл прошивки: AVR_oscilloscope.hex, можно будет скачать ниже. При выборе фьюзов необходимо указать использование внешнего кварца. После этого необходимо обязательно отключить JTAG интерфейс. Если этого не сделать, то на осциллографе будет отображаться экран инициализации, а после он будет уходить в перезагрузку.
Для настройки прибора нужно выполнить всего 2 вещи: настроить контрастность LCD при помощи подстроечного резистора Р2 и выставить центр осциллограммы при помощи подстроечного резистора Р1.
Использование
Вы можете перемещать луч осциллограммы вверх или вниз путем нажатия кнопок S8 и S4. Один квадрат на экране, соответствует 1В.
При помощи кнопок S7 и S3 можно увеличивать или уменьшать частоту измерений. Минимальная частота формы сигнала, которая может быть отображена на LCD составляет 460 Гц. Если необходимо посмотреть сигнал с более низкой частотой, например, 30 Гц, то необходимо нажать S7 для сжатия осциллограммы или S3 — для растяжения.
В осциллографе используется автоматический режим триггера. Это означает, что если входной сигнал повторяющийся (к примеру треугольник) то триггер работает хорошо. Но если форма сигнала постоянно меняется (к примеру какая-то последовательность данных), то для фиксации изображения необходимо нажать кнопку S6. Повторное нажатие S6 возвращает в нормальный режим.
Фото готового AVR осциллографа:
Видео работы осциллографа на AVR:
Источник
USB ПРОБНИК-ОСЦИЛЛОГРАФ
При настройке собранных электронных схем, особенно цифровых, необходимо бывает проводить различные измерения. Для этого можно пользоваться различными пробниками, например логическим пробником, самым простым, состоящим из светодиода, токоограничительного резистора, и проводков оканчивающихся с одного конца щупом, а с другого крокодилом. С его помощью мы можем убедиться, присутствует ли у нас логическая единица, или ноль, например на ножке МК, или выводе Ардуино. Я же решил пойти дальше, собрать то, что думаю заинтересует простотой сборки многих новичков, позволит получить полезные знаний из теории, посмотреть на форму сигнала, например, как это выглядит при мигании того же светодиода, и конечно же им можно будет проверить наличие логического ноля или единицы, на ножке МК. В общем, решил собрать простейший осциллографический пробник, с подключением к компьютеру по USB порту.
Данная схема является иностранной разработкой, откуда впоследствии она перекочевала в Рунет, и разошлась по множеству сайтов. В поисках детальной информации при его сборке, обошел множество сайтов, не меньше 10-12. На всех них были только краткое описание, переведенное и содранное с забугорного сайта и прошивка для скачивания, с примером выставления фьюзов. Ниже представлена схема этого осциллографического пробника:
Схема usb осциллографа-пробника
Я сознательно не называю его чисто осциллографом, потому что он не дотягивает до этого звания. Давайте разберем подробнее, что же он представляет из себя. Бюджет устройства составляет всего 250, максимум 300 рублей, и его сборку может позволить себе любой школьник или студент. Как наглядного пособия, для отработки навыков пайки, прошивания МК, в общем, для отработки всех навыков, необходимых для самостоятельного конструирования цифровых устройств. Если кто-то сразу загорелся и собрался немедленно бежать в магазин, за покупкой радиодеталей, подождите, у этого осциллографического пробника, есть несколько существенных минусов. У него очень неудобный софт, оболочка, в которой собственно мы и будем наблюдать наш сигнал. На следующем фото показано, как я ловлю момеху от пальца:
Сказать, что оболочка сырая, это значит ничего не сказать… Даже оболочки для использования, в качестве низкочастотного осциллографа на звуковой карте, существенно обходят ее по своим возможностям. На следующем фото, на короткое время касаюсь щупами выводов батарейки:
Начнем с того, что показания у нас выводятся в милливольтах, и шкалы по напряжению, соответствующей реальным значениям, попросту нет. Но и это еще не все. Схема устройства, как мы можем увидеть, посмотрев на рисунок со схемой, основана на МК Tiny 45.
В данном устройстве не применяется внешний быстродействующий АЦП, и это её существенный недостаток. Это означает, что при измерении сигнала с частотой, на которую наш пробник — осциллограф не рассчитан, мы получим на экране, просто прямую линию… Недавно мне потребовалось провести ремонт пульта дистанционного управления, диагностика показала, что и питание приходит, и дорожки все целые, и контакты на плате, вместе с резиновыми кнопками почищены, все безрезультатно, пульт не подавал признаков жизни. На местном радиофоруме, мне предложили заменить керамический резонатор, на котором кстати не было ни трещин, ни каких других внешних признаков, по которым можно было бы решить, что деталь неисправна. Решил послушать совета, сходил в магазин и купил новый керамический резонатор на 455 кГц, стоимостью всего 5 рублей, перепаял его, и пульт сразу “ожил”.
К чему я это рассказываю? А к тому, что после сборки этого пробника, пришла в голову мысль проверить на пульте генерацию тактового сигнала. Не тут-то было. Пробник-осциллограф показал, на одной ножке резонатора условно низкий уровень, на другой высокий, и вывел прямую линию. Не справившись даже с частотой 455 кГц. Теперь, когда вы предупреждены о его минусах, вы можете сами определиться для себя, нужен ли вам такой осциллографический пробник. Если все же да, то продолжаем чтение). Входное сопротивление обоих каналов осциллографа равно 1 МОм.
Для этой цели нам будет нужно приобрести и запаять подстроечные резисторы на 1 МОм, делитель сигнала 1\10. Соответственно сопротивления делителя, у нас должны составлять 900 и 100 КилоОм. Я решил использовать 2 канала осциллографа, так как был в наличии разъем — гнезда, распаянные на плате, два тюльпана, и разница в стоимости деталей для меня составляла, по сути, только стоимость подстроечного резистора. Другое дело, что оба канала оказались не идентичны по своим показаниям. Как мы видим на схеме один канал был рассчитан на работу с делителем, а другой нет. Ну да это не беда, если потребуется, чтобы и этот канал работал без делителя, нам достаточно выкрутить положения движка подстроечного резистора в ноль, тем самым подав сигнал с выхода, напрямую на ножку МК. Это может быть полезным при измерении сигналов, на двух линиях с низкой амплитудой. На следующем фото показано, как я снимаю сигнал с мультивибратора:
Также мы можем, покрутив регулятор подстроечного резистора, выставить, какой делитель нам требуется, 1\10, 1\25, 1\50, 1\100, или любой другой, измерив мультиметром сопротивление, между центральным выводом и крайними выводами подстроечного резистора. Это может потребоваться для измерения формы сигнала, с большой амплитудой напряжения. Для этого нужно будет лишь подсчитать, получившиеся соотношения сопротивлений делителя. Есть еще один важный нюанс, на иностранном сайте автора схемы, при выборе фьюзов указано, что нужно перевести фьюз — бит Reset Disable в положение включено. Как мы помним, отключение этого фьюз – бита, прекращает возможность последовательного программирования. Фьюзы которые нужно изменить, показаны на следующем рисунке:
В данной схеме Pin 1 Reset не используется как Pin, поэтому нам изменять этот фьюз-бит не обязательно. Но на одном из форумов, для более стабильной работы осциллографа – пробника, рекомендовали притянуть Pin Reset через резистор 10 килоОм к плюсу питания, что я и сделал. Также, когда искал информацию по нему, ни на одном из сайтов я не нашел понятного и доступного объяснения, насчет источника тактирования МК Tiny 45. Так вот, в этой схеме МК тактируется не от внутреннего RC – генератора, не от кварцевого резонатора, а от внешнего тактового сигнала, подаваемого на МК от USB порта. Логично предположить, что выбрав этот источник тактирования, МК перестанет у нас быть виден, в оболочке для прошивания, при отключении от USB порта, поэтому сначала залейте прошивку, а затем внимательно выставляйте фьюз биты.
Давайте разберем схему осциллографа более подробно, на сигнальных линиях USB порта D+ и D-, установлены согласующие резисторы на 68 Ом. Изменять их номинал не рекомендую. Между сигнальными жилами и землей, рекомендовано для снижения помех, установить керамические конденсаторы на 100 наноФарад. Такой же конденсатор на 100 наноФарад, нужно установить параллельно электролитическому, на 47 микроФарад, установленному по цепям питания +5 вольт и земля. Между землей и сигнальными линиями, должны быть установлены стабилитроны на 3.6 Вольта. Я правда поставил на 3.3 вольта, все работает нормально. Предусмотрена индикация включения на светодиоде, включенном последовательно с резистором 220-470 Ом.
Номинал в данном случае не критичен, и от него зависит только яркость свечения светодиода. Я установил на 330 Ом, яркость свечения достаточная. В схеме установлен резистор номинала 1.5-2.2 килоОма, для определения устройства операционной системой.
Подпаивайте провода USB кабеля к плате ориентируясь по распиновке кабеля, а не по расположению на схеме осциллографа. На схеме очередность следования жил указана произвольно. Также из несущественных недостатков, по отзывам пользовавшихся, после перезагрузки Windows, нам потребуется переткнуть осциллограф заново в USB порт. Не забудьте снять фьюз — бит делитель тактовой частоты на 8 CKDIV 8. Данный осциллограф не требует для своей работы, каких-то сторонних драйверов, и определяется как Hid устройство, аналогично мышке или клавиатуре. При первом подключении, устройство определится как Easylogger. На следующем рисунке, приведен список необходимых для сборки деталей.
Существует 6 версий программы Usbscope, оболочки, в которой собственно мы и наблюдаем график. Первые три версии не поддерживают 64-битные операционные системы Windows. Начиная с четвертой версии Usbscope, поддержка обеспечена. Для работы программы на компьютер должен быть установлен Netframework. На сайте автора были выложены исходники прошивки, и исходники программы-оболочки, так что возможно найдутся умельцы, которые смогут дополнить софт. Какое-же практическое использование данного осциллографа, неужели только как игрушка? Нет, данный прибор используется в автоделе домашними умельцами, как бюджетная замена дорогому осциллографу, для настройки автомобильных систем зажигания, расхода топлива и подобных нужд.
Видимо частота работы в автоделе достаточно низкая, и данного пробника минимально хватает, хотя бы для разовых работ. Для подключения к измеряемой схеме спаял два щупа, использовав для этого, с целью снизить уровень помех, экранированный провод, тюльпаны или разъем RCA. Это обеспечивает легкое подключение и отсоединение щупов от осциллографа.
- Один из проводов – щупов осциллографа, оканчивается для измерения щупом от мультиметра для сигнальной жилы, и крокодилом для подключения к земле.
- Второй щуп оканчивается крокодилами разных цветов, и для сигнальной жилы и для земли.
Вывод: сборка данного пробника, целесообразна, скорее как наглядное пособие, для изучения формы низкочастотных сигналов. Для практических целей, например для проверки и настройки импульсных блоков питания, в частности работы ШИМ контроллеров, данный пробник не годится однозначно, так как не может обеспечить необходимого быстродействия. Поэтому не может являться заменой, даже самому простому советскому осциллографу, и даже простым осциллографам с Али экспресс.
Скачать архив со схемой, прошивкой, скрином фьюзов и оболочкой осциллографического пробника, можно по ссылке. Всем успехов, специально для Радиосхемы — AKV.
Источник