Органические светодиоды своими руками

Делаем простой светодиод своими руками

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением. Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА. При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Источник

Что такое органические светодиоды?

С приходом мировой общественности к концепции устойчивого развития, которая подразумевает экологизацию всей промышленности и повышение экологической сознательности потребителя, товары, на которых есть обозначение «органические», вызывают большой интерес и повышение спроса. И органические светодиоды не стали исключением. Новые технологические решения и новые товары неизменно привлекают внимание «продвинутых» потребителей, шагающих в ногу со временем. Что это такое — органические светодиоды, каковы принципы их работы и перспективы использования? Это и есть тема данной статьи.

Совсем немного истории

Электролюминесцентные свойства органических материалов открыл в 1950 году французский физик Андре Бернаноз. Но только в 1987 году это открытие приобрело технологическое решение в первом OLED-устройстве, изготовленном фирмой «Кодак». А в 2000 году сразу три химика – А. Мак-Диармид, Х. Сиракава и А. Хигер – были удостоены Нобелевской премии за открытия в области тонкопроводящих полимеров органического происхождения. Только в 2008 году в продажу поступила первая OLED-лампа фирмы OSRAM, которых было изготовлено всего 25 экземпляров по цене 25 тысяч евро. Сегодня же такие лампы предлагают несколько компаний по цене от 500 евро, и существует уже несколько направлений в OLED-технологиях: PHOLED, TOLED, FOLED и другие, которые понятны только специалистам.

Читайте также:  Кроссовер для мидбаса своими руками

Где органика?

Как ни странно, но применение слова «органические» в данном контексте не имеет никакого отношения к продуктам животного или растительного происхождения. Органические светодиоды, или OLED (от английского Organic Light Emitting Diode), – это полупроводник, изготовленный из углеродного материала, который генерирует излучение при прохождении через него электрического тока. При их изготовлении используются продукты органической химии (соединения углерода), что и позволяет назвать их органическими светодиодами.

Устройство и состав

Само устройство состоит из четырех частей: основания, анода, катода, проводящего и излучающего слоев. Основание или подложка могут быть из стекла, пластика или металлизированных пластин. Анод представляет собой оксид индия, легированный оловом. Проводящим и излучающим слоем служат слои полимеров и низкомолекулярных органических соединений. Катод изготовлен из алюминия, кальция или другого металла.

Технология работы не для физиков

Органические светодиоды устроены по принципу бутерброда. Несколько тонких слоев полупроводников органического происхождения зажаты между разнозаряженными электродами (положительным и отрицательным). И все это расположено на основе из прозрачного материала – стекла или пластика (например, гибкого полимида). При прохождении тока через электроды они образуют заряженные частицы (квазичастицы и электроны). В среднем органическом слое эти частицы концентрируются и создают высокоэнергетическое возбуждение, что и вызывает излучение света разных цветов органической прослойкой. Активной матрицей на органических светодиодах, таким образом, являются именно люминесцентные или фосфорецентные органические слои.

Типы матриц органических светодиодов

OLED-дисплеи по типу матриц делят на активно-матричные и пассивно-матричные. Активно-матричные устройства управляются тонкопленочными полевыми транзисторами, что расположены под анодной пленкой. В пассивно-матричных изображение формируется в точке пересечения перпендикулярно расположенных анодных и катодных полос, при этом управление осуществляется с внешней схемы. Исходя их этого, существует три схемы цветных OLED-дисплеев:

  • С раздельными цветными эмиттерами – три органических матрицы излучают три базовых цвета (синий, зеленый и красный), из которых формируется изображение.
  • С тремя белыми эмиттерами и специальными цветными фильтрами.
  • Голубые эмиттеры преобразуют короткие волны в длинные волны красного и зеленого цветов.

Современное применение

В наше время OLED-технологии находят применение в основном в узкоспециализованных разработках. Голография и приборы ночного видения, органические дисплеи автомагнитол и цифровых фотоаппаратов, экраны телефонов и источники света, телевизоры и мониторы – все это уже реалии OLED-технологий.

Срок службы OLED-девайсов

Все современные устройства, созданные по данной технологии, раньше или позже проявляют выгорание яркости цвета. Еще при открытии была обнаружена недолговечность излучения органических светодиодов. Ресурс эксплуатации устройства сегодня считают практически исчерпанным, если яркость дисплея снизилась на 50 %. Эксплуатацию прекращают при данном показателе около 70 %. Но инвестиции корпораций в развитие данных технологий дают свои результаты – чаще потребитель меняет устаревший девайс еще до того, как он подходит к близкому завершению срока службы.

Самые самые

Самая большая панель с органическими светодиодами на сегодня – это продукт совместного проекта корпораций OSRAM, Philips, Novaled, Fraunhoter IPMS. Размер панели — 33 на 33 см, площадь активной части — 828 кв. см, а светосила — 76 %. При яркости 1 тысяча кандел на квадратный метр поток световых частиц составляет 25 люмен на ватт. Продаваемая сегодня самая большая панель фирмы Lumiotec имеет размер 15 на 15 сантиметров и световой поток до 60 люмен на ватт, что равно одной люминесцентной лампочке. А корпорация Panasonic к 2020 году планирует запустить на рынок дисплей на органических светодиодах со световым потоком 128 люмен на ватт. С ней соревнуется американская корпорация DoE, которая обещает панели с потоком до 170 люмен на ватт.

Перспективы OLED-панелей

Большинство существующих образцов сегодня являются прототипами. Они дорогие, изготовлены в ограниченных партиях, не сгибаются и пока недостаточно эффективны. Крупные корпорации сосредоточили свою деятельность на удешевлении проекта, увеличении размеров и повышении продуктивности. Эксперты прогнозируют массовое появление данной продукции с доступными ценами на мировом рынке к 2020 году.

Читайте также:  Покраска нового бампера баллончиком своими руками

OLED-освещение

Органические светодиоды в освещении пока представлены на рынке в зачаточном состоянии. Массовое производство данного товара пока не запущено ни одной корпорацией. Цена таких светильников все еще довольно высока для среднего потребителя, а яркость и срок их службы оставляют желать лучшего. Оборот в 75 миллиардов долларов на мировом рынке, который составляет доля OLED-освещения, — это довольно небольшая сумма. Потребителями данной продукции становятся не физические лица, а другие корпорации, что занимаются дизайном мебели и помещений, а также корпорации автопрома.

Достоинства и недостатки

У органических светодиодов есть и преимущества, и недостатки. Среди первых бесспорны их невысокое энергопотребление и равномерное распределение света по всей панели, высокий КПД, экологичность и мягкий свет. Но главное достоинство – это возможность придания им гибкости и тонкости. А недостатками можно считать недолговечность службы диодов, дороговизну и технологические проблемы (органическая составляющая окисляется при контакте с водой, что требует дополнительной герметизации). Но корпорации продолжают вкладывать инвестиции в развитие данных технологий, видя в них будущее электроники.

Насколько это экологично

В OLED-материалах не содержатся тяжелые металлы и токсичные элементы типа ртути. Они легко перерабатываются и не требуют специального сбора и дополнительных технологических мощностей при утилизации. Иридий фосфоресцентных ламп на органических светодиодах нетоксичен, и его количество крайне мало. Транспортировка тонких и легких OLED-панелей требует меньшего количества ресурсов, что сокращает затраты и снижает нагрузку на окружающую среду. Например, телевизор с OLED-монитором диагональю в 55 дюймов имеет толщину 4 мм, а весит порядка 4-5 килограммов.

Фантастика станет реальностью

Несмотря на скептицизм некоторых экспертов, большинство уверено, что OLED-технологии станут главным прорывом в 21 веке. Фантастические проекты станут реальными, а именно:

  • Именно эти технологии позволят создать не иллюзорную, а вполне реально трехмерную картинку.
  • Освещение везде заменят OLED-лампы.
  • Появятся прозрачные солнечные батареи.
  • Гибкие мониторы гаджетов можно будет уместить в кармане.
  • Невероятно легкие мониторы с высоким качеством цвета и широким углом обзора будут иметь мгновенный отклик, минимальный размер и габариты.
  • Применение технологий в военной промышленности вообще поражает воображение.
  • А вот светящаяся одежда уже появилась в дизайнерских коллекциях.

Но не стоит останавливаться на достигнутом — девиз ученых-теоретиков и практиков. Современная наука давно находится в точке бифуркации, когда любое открытие может повернуть развитие цивилизации в совершенно непредсказуемое русло. Примеров таких открытий предостаточно: это и наполненность вакуума, и трубы Красникова, и даже открытие органических соединений в глубоком космосе. Сегодня авангард электронных гаджетов — органические светодиоды, а что завтра — кто знает?

Источник

Органические светодиоды своими руками

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Читайте также:  Примеры фотозона своими руками

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Изготовление органических oLED светодиодов

Что же такое органический светодиод? Organic Light-Emitting Diode (oLED) — органический светоизлучающий диод, изготавливается из органических соединений, способных излучать свет при прохождении тока.

В этой статье мы рассмотрим изготовление органических светодиодов oLED в домашней лаборатории своими руками.

Координационный комплекс между прозрачным электродом из оксида олова и активным металлическим электродом излучает свет при подаче внешнего напряжения. Покрытие слишком тонким слоем [Ru(бипиридин)3](BF4)2-поливинилового спирта приведет к короткому замыканию и отсутствию светового излучения; слишком толстое покрытие будет обладать слишком высоким электрическим сопротивлением, и также приведет к отсутствию излучения.

Определите проводящую сторону покрытого оксидом олова образца стекла путем измерения сопротивления с помощью тестера. Конечное сопротивление проводящей стороны должно составлять 20-30 Ом.

С помощью двусторонней клейкой ленты закрепите покрытое оксидом индия и олова стекло проводящей стороной наружу на вентиляторе со скоростью вращения до 2500 оборотов в минуту.

С помощью ватной палочки нанесите раствор [Ru(бипиридин)3](BF4)2-поливинилового спирта на центральную часть стекла. Вращайте образец с частотой 2500 оборотов в минуту в течение 30-60 с, используйте защитный экран для предотвращения разбрызгивания. Повторите нанесение 3-4 раза, оставляя края непокрытыми.

Вместо предпочтительного метода покрытия с помощью вращения можно с помощью двусторонней клейкой ленты прикрепить покрытое оксидом индия и олова стекло проводящей стороной наружу к поверхности стола. С помощью ватной палочки нанесите очень тонкий слой раствора [Ru(бипиридин)3](BF4)2-поливинилового спирта на стекло. Испарите жидкость с помощью термофена или фена для волос. Повторите нанесение 3-4 раза, оставляя края непокрытыми.

Изготовьте трафарет. Для этого приклейте кусочек изоленты к алюминиевой фольге и проколите в нем отверстие диаметром приблизительно 3 мм.

Просушите стекло феном не менее минуты, чтобы удалить всю оставшуюся на пленке жидкость. Первая причина неудачи при изготовлении органических светоизлучающих диодов oLED связана с недостаточным высушиванием полимерного слоя перед нанесением активного металлического слоя.

С помощью ватной палочки нанесите через трафарет жидкий сплав галлия и индия (активный металлический электрод). Эвтектическая смесь 75,5% галлия и 24,5% индия жидкая при температуре выше 16,5 о С.

Подведите положительный вывод источника питания 4,5 В к покрытому оксидом олова стеклу (не к полимерному покрытию). Осторожно подведите отрицательный вывод к сплаву галлия и индия. Во влажной среде срок службы значительно снижается.

Смотрите с непокрытой стороны стекла.

Или смотрите в темноте.

Является ли этот участок диодом? Что произойдет если поменять полярность подаваемого напряжения?

Готовые растворы для различных приготовлений:

Поместите приблизительно 0,30 г PVA (поливиниловый спирт, Aldrich, 36,316-2, средняя молекулярная масса 124 000 — 186 000) и 10 мл воды в 30-миллилитровый химический стакан. Для растворения PVA накройте стакан неплотно пластиком и грейте в микроволновой печи несколько раз по 15 с до полного растворения. Не допускайте кипения раствора.

Растворите приблизительно 0,035 г [Ru(бипиридин)3](BF4)2 (синтез — см. статью 2) в 3 мл раствора поливинилового спирта.

GaIn Eutectic (Эвтектическая смесь галлия и индия), Aldrich, 49542-5

  • Проводящее стекло (стекло 1″ х 1″ х 2,3 мм ТЕС 15), Hartford Glass Co, 735 E Water Street, Hartford City, IN 47348 Phone: 765-348-1282
  • Омметр
  • Вентилятор со скоростью вращения 2500 оборотов в минуту и источник питания: вентилятор Radio Shack 273-243B 12VDC, универсальный адаптер питания 273-1662
  • Двусторонняя клейкая лента
  • Трафарет, изготовленный из алюминиевой фольги и изоленты с отверстием

3 мм

  • Ватные палочки
  • Фен
  • Источник питания 4,5 В
  • Модификация Джейсона Мармона, Джорджа Лисенски и Уэнди де Профетис с использованием следующих источников: Франк Г. Гао, Аллен Дж. Бард «Полупроводниковые органические светоизлучающие диоды на основе комплексов трис(2,2′-бипиридин)рутения (II)», Журнал американского химического общества, 122(30), 7426-7427 (2000); Ханна Севьян, Син Мюллер, Хартмут Рудманн, Майкл Ф. Рабнер «Использование органических светоизлучающих электрохимических тонкопленочных компонентов в изучении материаловедения», Журнал химического образования, 81(11), 1620 (2004).

    Смотрите другие статьи раздела Технологии радиолюбителя.

    Читайте и пишите полезные комментарии к этой статье.

    Источник

    Оцените статью
    Своими руками