- Делаем оптоволоконный светильник своими руками
- Особенности конструкции приборов освещения из оптоволокна
- Принцип работы
- Световая интенсивность будет зависеть от следующих факторов:
- Состав системы
- Соберем светильник «Плакучая ива» из оптоволокна
- Как сделать волоконно-оптическую светодиодную лампу
- Шаг 1. Детали, необходимые материалы
- Шаг 2. Электрическая схема
- Шаг 3. Сборка
- Шаг 4. Программное обеспечение
- Шаг 5. Пользование лампой
- Шаг 6. Некоторые выводы
Делаем оптоволоконный светильник своими руками
Провести освещение в любую баню, особенно парилку – это не легкая задача, так как в подобных помещениях наиболее неблагоприятная среда для электротехники: повышенный температурный режим, постоянная влажность, парообразования. Специально для бань были разработаны оптоволоконные модели светильников, которые предоставляют возможность обходиться в парилке без электропроводки.
Особенности конструкции приборов освещения из оптоволокна
Для такого светотехнического оборудования применяется способность стекла практически без потерь подавать световой поток на довольно большие расстояния. Как правило, из стекла делают длинные нити, которые называют волокнами. Далее их собирают в один пучок, оборачивают (или нет) в специальную защитную оболочку.
Но разработчики нашли способ, как удешевить производственную технологию оптоволокна. Для этого использовали полимерный материал – акрил. Такой оптический проводник тоже не дешевый, но стоит в разы меньше стеклянного.
Принцип работы
Как же функционируют осветительные системы подобной конструкции? Как правило, на одном окончании оптоволоконного кабеля фиксируется проектор-излучатель, оснащенный специальными фильтроэлементами. В результате светопередача осуществляется оптоволоконными нитями с одной стороны противоположным оптоволоконным нитям. Визуально можно наблюдать световые лучи на срезах оптоволоконных нитей. Для того, чтоб свечению обеспечить прочую форму, на каждую такую нить надевают небольшие линзы, рассеивающие излучаемый свет.
Световая интенсивность будет зависеть от следующих факторов:
- качества оптоволоконных нитей;
- однородности волокна;
- диаметра нитей;
- формы линзы, качества ее исполнения;
- мощности светового источника.
К сведению! Изготавливаются волокна, стенки которых также светятся (если нет изоляции).
Состав системы
Оптоволоконные светильники чаще всего продаются комплектами, в который входят следующие компоненты:
- Проектор. Это специальная установка небольших размеров – единственный элемент конструкции, который подсоединяется к источнику питания. Для проектора используются газоразрядные, галогенные, led светодиодные лампы. Дополнительно могут использоваться: пусковой механизм, преобразователь напряжения, несколько разных линз для замены цвета, прочие детали. От количества дополнительных элементов, мощности светового источника будет зависеть уровень освещенности помещения.
- Оптические нити – волокна. Они создают направленный световой поток (в оболочке), способны также формировать свечение линейного типа вдоль всей длины оптоволоконной нити. Существуют варианты точечного свечения вдоль оптоволоконной нити. Яркость светового потока в первую очередь зависит от диаметра оптоволоконной нити, мощности светотехнического оборудования, в данном случае проектора с лампами.
К сведению! Количество волокон может исчисляться единицами и тысячами оптоволоконных нитей. Освещение парилки достигается именно комбинацией нитей с различными характеристиками.
- Линзы. Еще одна техника внести разнообразие в систему освещения. Именно благодаря разным формам, размерам линз, их обработке можно достигать самых неожиданных световых эффектов – от привычных световых пучков направленного действия до огромного количества светящихся лучиков, распространяющихся по пространству веером.
К сведению! Существуют также разнообразные поворотные, подвижные детали, механизмы регулировки интенсивности потока света, которые могут дополнительно устанавливаться на светотехнические устройства.
При планировании организовать оптоволоконное освещение загородной бани своими руками, рекомендуется подбирать светотехнику данной категории не лишь по численности, длине волокон. Стоит обязательно обращать внимание на используемый световой источник – ГЛ, ГРЛ, LED.
Если в прожекторе стоят газоразрядные, галогенные лампы, обязательно нужно проверить функционирование вентилятора охлаждения. Бывают достаточно шумные модели, способные испортить отдых. Поэтому рекомендуется приобретать проекторы с led элементами, которые абсолютно не нагреваются, соответственно им не требуется охлаждение.
Источник
Соберем светильник «Плакучая ива» из оптоволокна
Поскольку автор статьи впервые работает с этим материалом, он большинство электронных деталей покупал уже в готовом состоянии. Сюда включено оптоволокно, источник света, коим стали светодиоды, а также управляющие составляющие. В будущем мы возможно узнаем, как сделать из оптоволокна люстру с нуля.
Собирается самоделка, по словам автора, один или два дня, но это с учетом того, что уже найдены все материалы. Ну и конечно, время сборки будет сильно зависеть от сложности всей конструкции. Особых навыков работы с инструментами тут не требуется. Дизайн можете придумать свой, повторять все в точности не обязательно.
Материалы и инструменты для изготовления светильника:
— оптоволоконная заготовка «starry sky» (автор использовал светодиод с мощностью 1В, но его оказалось слишком мало для создания светильника, он работает скорее как подсветка, так что лучше подобрать что помощнее);
— коробочка для изготовления корпуса светильника (можно поискать из под продуктов. Лучше всего, чтобы корпус был несгораемым и с ним было удобно работать);
— клеевой пистолет (у автора ушло 3 стержня клея);
— рейка для создания оси (она будет удерживать ствол в вертикальном стоянии и еще с помощью нее светильник будет крепиться к стене);
— стальная проволока для создания ствола (автор выбрал стальную ржавую проволоку, ее цвет без покраски хорошо напоминает цвет древесины. Диаметр проволоки составляет 1 мм, этого хватит, чтобы держать нужную форму);
— электрические составляющие (кабель, вилка и желательно выключатель);
— кусок наждачной бумаги (с помощью нее нужно будет зачищать оптоволокно в некоторых местах, чтобы получить эффект рассеивания цвета);
— отвертки, прищепки, плоскогубцы, нож, ножницы и другие инструменты, который каждый без проблем найдет у себя;
— дрель, винты, дюбеля и другие инструменты для крепления светильника на стену;
— если вы захотите изготовить место для хранения пульта, как то сделал автор, то вам понадобится продуктовая сетка, кусок веревки длиной 20 см, клепочник, дырокол, а еще люверс.
Процесс изготовления светильника:
Шаг первый. Подготавливаем корпус для светильника
В корпус светильника устанавливается вся начинка. В нем нужно будет просверлить три вида отверстий. Одно отверстие нужно для подключения кабеля питания. Другие отверстия или отверстие нужно для вывода оптического волокна. Тут важно, чтобы отверстия не царапали волокно, так как в этом месте оно начнет рассеивать свет, и светильник будет работать не так как нужно. Чтобы скрыть острые края, автор обработал их горячим клеем. Оптоволокно у нас выходит четырьмя пучками, так что и отверстий должно быть четыре.
Ну и еще в корпусе нужно будет проделать отверстие для крепления светильника к стене.
При необходимости корпус можно покрасить. Автор красит его в тот же цвет, что и свою стену, чтобы замаскировать корпус.
Шаг второй. Изготовление мешочка для пульта (по желанию)
Если вы не хотите постоянно искать о дому пульт от светильника, можете изготовить для него вот такую вещь. Из продовольственной сеточки нужно сделать мешочек и засунуть туда пульт. Для крепления этой штуки автору понадобилась этикетка от лука, он сложил ее пополам и дыроколом проделал отверстие. Далее туда с помощью клепочника был установлен люверс.
Шаг третий. Подключаем электронные компоненты
При необходимости на корпусе светильника можно установить выключатель, а более просто это можно сделать на питающем проводе. Автору это делать не потребовалось, так как у него выключатель размещен на стене. У автора провод от светильника был без вилки, так что ему пришлось ее устанавливать. Никогда не вставляйте провода напрямую в розетку без вилки, это опасно для вас и окружающих.
Очень важно позаботиться о безопасности, если корпус сделан из металла. Тут должно быть все хорошо заизолировано, чтобы избежать короткого замыкания или пробивания тока на корпус.
Шаг четвертый. Крепим рейку к корпусу
Чтобы светильник не поломался при перемещении, автор закрепил к его корпусу рейку с помощью горячего клея.
Шаг шестой. Детально изучаем иву
Чтобы точно понять, какие у ивы должны быть ветви, крайне рекомендуется изучить пару реальных деревьев.
Важно понимать, что ветви весят довольно много, чтобы согнуть проволоку. Так что если вы решите делать не иву, а другое дерево, то вам нужно будет сделать ветви покрепче.
Пучок проволоки нужно будет скрутить внизу, чтобы сформировать корень. Еще один кусок нужно пустить сквозь или вокруг рейки, чтобы закрепить ствол.
Шаг восьмой. Плетем ствол и деревья
Для формирования ствола нужно скрутить оптоволокно и проволоку. Сперва скручивается оптоволокно, а затем оно сверху оборачивается проволокой. В некоторых местах проволоку нужно будет оборачивать еще и вокруг рейки, чтобы зафиксировать ствол. Для придания стволу естественной формы, ему нужно придать изгиб, как у настоящего дерева.
В местах крепления оптоволокна к чему-либо нужно позаботиться о том, чтобы материал был зажат не слишком сильно, так как в этом случае оптоволокно начинает излучать свет, аналогичный случай это повреждение материала. Если вы хотите убедиться, что все делаете правильно, можете включить светильник и производить дальнейшую сборку. Нужно добиться того, чтобы ствол не светился.
Что касается внешнего вида, тот тут уже решает каждый сам для себя. Автор свесил с каждой ветки по 3-4 волокна. На металлических краях ветвей нужно сформировать колечки, дабы не повредить самоделку, если за нее кто-то зацепится.
Шаг девятый. Завершающая доработка дерева
В принципе, если дерево после включения вас уже устраивать, его уже можно закрепить на стене. Но для придания более органичного внешнего вида его можно доработать. Тут вам понадобится горячий клей и наждачная бумага. Если вы хотите, чтобы оптоволокно излучало свет в некоторых местах, его моно зачистить нажачной бумагой. Так можно выделить ветви, имитировать кору на стволе и так далее.
Если вы хотите сформировать на ветвях светящиеся капли, то есть слезы ивы, вам на помощь придет горячий клей. Капли нужно будет нанести на кончики ветвей. Помимо того, что клей рассеивает свет, он еще и работает в качестве грузика, который оттягивает ветвь вниз, как у настоящей ивы.
Если некоторые части ветвей окажутся слишком длинными, их предварительно можно отрезать
Источник
Как сделать волоконно-оптическую светодиодную лампу
Ранее я уже делал подобные проекты, но в этот раз я хотел сделать что-то попроще, то, что будет легким в изготовлении, и то, что смогли бы сделать многие из вас. «Механические» части лампы печатаются на 3D-принтере, электронная часть довольно проста, а пластиковое оптическое волокно притягивает взгляд. Сейчас я расскажу, как легко и просто изготовить такую светодиодную лампу.
Шаг 1. Детали, необходимые материалы
Детали, распечатанные на 3D-принтере, файлы tinkercad;
Адресные светодиоды WS2812 (изготавливаются из ленты, 60 светодиодов на 1 м) – 32 шт.;
Кабель питания 5 В с вилкой постоянного тока 5,5×2,5 мм – 1 шт.;
Кабель питания 5 В/1 А со штепсельной вилкой 5,5×2,5 мм – 1 шт.;
И ещё немного по мелочи: провода, термоусаживаемые муфты для соединений и клей для горячего склеивания.
Если у вас нет опыта работы в tinkercad, прилагаю файлы stl:
Шаг 2. Электрическая схема
Как видно из рисунка, cхема устройства чрезвычайно проста.
Шаг 3. Сборка
Я начал с 3D-печати компонентов. Сам процесс занимает довольно много времени, поэтому во время печати компонентов я занимался тем, что соединял друг с другом части светодиодной ленты. Перед установкой паяных деталей желательно проверить правильность работы светодиодов в соответствии с инструкциями, приведёнными на шаге 3 проекта «Волоконная оптика и светодиодные лампы – Украшение стен» (единственное, что я изменил, – это значение DATA PIN на 5 и NUM_LEDS на 32).
После завершения печати рамы последовала самая сложная часть – установка и крепление в каналах рамы лампы четырёх полосок светодиодной ленты по 8 светодиодов в каждой. Я чуть-чуть приподнял защитный пластик самоклеющегося слоя светодиодной ленты и для более точной фиксации использовал несколько волоконно-оптических концов, вставленных через боковые отверстия. Затем я аккуратно снял защитный слой и, прижав ленту к раме, закрепил её. На фотографиях выше эти операции показаны в деталях.
После этой процедуры я вставил в боковые отверстия несколько кусков пластикового оптоволокна. Я вырезал куски как можно более перпендикулярно, используя тот же шаблон, что и в проекте «Волоконная оптика и светодиодные лампы — Украшение стен«. Получилось 8 отрезков волокна, всего 16 отрезков разной длины соединяют пары отверстий, находящихся на одинаковом расстоянии от боковых сторон рамы лампы (см. фотографии выше).
Остальные соединения я сделал в соответствии с электронной схемой, затем установил опору лампы и зафиксировал её большим количеством клея для горячего склеивания, нажимную кнопку я прикрепил также с помощью клея для горячего склеивания (это надо делать после установки нажимного штифта), после чего в соответствующем месте опоры закрепил модуль Arduino Pro Mini. Вот и всё!
Шаг 4. Программное обеспечение
Последний шаг в изготовлении лампы – загрузка программы на микроконтроллер Arduino. Как видно из фотографий выше, я использовал адаптер с USB-порта на последовательный порт с подключённым чипом FT232RL. Естественно, загрузить код можно с помощью других адаптеров с USB-порта на последовательный порт. О технике программирования модуля Arduino Pro Mini есть много статей в Интернете.
Исходный код программы можно загрузить отсюда: github.
Несколько слов о программе…
Лампа работает в трёх основных режимах, которые можно выбирать двойным нажатием на кнопку: режим сплошного цвета (с эффектом «дыхания»), режим палитры и режим эффектов. Однократным нажатием на кнопку в режиме сплошного цвета выбираются различные цвета (9 цветов) также с эффектом «дыхания», в режиме палитры выбираются несколько цветовых палитр, которые можно взять здесь: PaletteKnife для FastLED, а в режиме эффектов выбираются… да, вы правы, эффекты:)
Программа представляет собой адаптированные коды из FastLED Breath для создания эффекта «дыхания», коды из palettes with button control для создания различных цветовых палитр и коды из DemoReel100 with button для создания эффектов. Для того чтобы перевести модуль Arduino Pro Mini в спящий режим двойным нажатием на кнопку, я воспользовался инструкциями из следующей статьи. При таком двойном нажатии также сохраняются текущий режим работы и настройки каждого режима работы.
Я воспользовался следующими внешними библиотеками (библиотеки sleep.h и EEPROM.h уже встроены в модуль Arduino): FastLED и ArduinoMultiButton.
Шаг 5. Пользование лампой
Как пользоваться лампой, показано на видео ниже.
Шаг 6. Некоторые выводы
Должен признаться, что я делал эту лампу для себя, так как мне хотелось получить в итоге нечто необычное.
Лампы сделанные по этому проекту
Я поставил лампу на прикроватный столик, пользовался ею несколько дней, и мне она очень понравилась. Я весьма доволен, что лампа в итоге так хорошо себя показала. Однако, возможно, в будущем я внесу в её конструкцию некоторые изменения…
Например, в режиме цветовой палитры я бы несколько понизил яркость или выбрал бы цветовые палитры с меньшей яркостью. Ещё я добавил бы ряд эффектов. Например, добавить шумовой эффект или запитать светодиодную ленту через транзистор MOSFET, снизив тем самым энергопотребление лампы в спящем режиме. Сейчас, если я выключаю лампу двойным нажатием на кнопку, она потребляет около 30 мА, в рабочем режиме она потребляет максимум 400 мА.
Спасибо что прочитали и удачного крафта!
Узнайте подробности, как получить Level Up по навыкам и зарплате или востребованную профессию с нуля, пройдя онлайн-курсы SkillFactory со скидкой 40% и промокодом HABR, который даст еще +10% скидки на обучение.
Источник