Оптические датчики своими руками

Мой опыт создания оптического датчика для БСЗ

Мотоцикл ИЖ — Юпитер 5

Я не стану рассказывать о том, что такое БСЗ и для чего оно нужно — об этом написано уже очень много и до меня. Речь немного о другом. Вдохновившись статьями с Мотоижа и других сайтов, и в виду необходимости, решил и я собрать оптический датчик, так как покупать его у кого-то за большие деньги мне, человеку, умеющему держать паяльник в руках, не хотелось.

Не стану пересказывать статью некоего Умки (ссылка на неё внизу), а напишу только о том, что получилось у меня.

Итак. Третья картинка — схема датчика из той самой статьи. Оптопару я также взял из мышки, хотя этот же самый фототранзистор и ик-светодиод можно купить в Чип-и-Дипе, например. А вот LM317 ставить не стал, поставил только токоограничивающий резистор. Дело вот в чём: по даташиту на ик-светодиод KM-4457F3C (который из мышки) его прямое напряжение — 1, 2В при токе в 20мА, откуда получается, что при питании от 12В последовательно с ним нужно поставить резистор минимум на 560Ом, я же ставил на 1кОм — с запасом (при 6В бортсети достаточно будет резистора на 240Ом). Моя схема на четвёртой картинке.

Так, теперь печатная плата. Её я разводил уже с нуля, так как предложенная в статье меня не устраивала из-за сложной конструкции модулятора. Расстояние между отверстиями для болтов крепления — 24мм, как у датчика Холла. На верхней части платы расположен ик-светодиод, на нижней — всё остальное. Для надёжности всё залито эпоксидкой. Да, выглядит не так, чтобы очень красиво, но для меня надёжность важнее.

С данным датчиком я откатал вторую половину прошлого сезона. За это время он меня ни разу не подвёл, и это при том, что пылинки я с него не сдувал.

Фото процесса сборки я, к сожалению, не сделал, но надеюсь, что представить это будет несложно.

Задавайте вопросы, буду рад на них ответить.

Источник

ОПТИЧЕСКИЙ ДАТЧИК НА ФОТОДИОДЕ

Данная статья представляет собой обзор перспектив применения каскодного усилителя для согласования фотодиодного датчика с длинным кабелем. Задача стояла изготовить оптический датчик, подключающийся к тахометру с помощью коаксиального кабеля. Тахометр применен опытно-промышленного изготовления, поэтому его в данной статье рассматривать не будем.

Недостатки классических подходов

Для начала вспомним как работает фотодиод: при внешнем освещении он начинает вырабатывать небольшой фототок, порядка сотни наноампер. Затем этот ток либо усиливается и передается, либо наоборот, передается и в приемнике усиливается. Первый подход требует отдельного источника питания, а это, в свою очередь, вынуждает применять трехпроводные кабели и разъемы.

Да и сам усилитель, даже будучи собранным на SMD, занимает ценное пространство пробника и, скорее всего, потребует применение печатной платы, что неудобно. Второй подход порождает иные проблемы. Подключив фотодиод к длинному кабелю, можно столкнуться при передаче с наводками и утечками, а если вход у прибора высокоомный, то и с емкостью самого кабеля, которая ограничит частотный диапазон работы. Данный способ имеет право на жизнь, если соединительная линия имеет небольшую длину и в приемном устройстве применяется приличный усилитель. В нашем же случае на такой усилитель рассчитывать не стоит. А учитывая и то, что тахометр эксплуатируется в условиях сильных электромагнитных помех, такой подход просто неприменим. Тут требуется иное решение.

Читайте также:  Крепление для спутниковой антенны своими руками

Преимущества каскода

Каскод представляет из себя усилитель на паре транзисторов, включенных по схеме преобразователь напряжение-ток и ток-напряжение. Ветвь ток-ток при этом находится под неизменным напряжением, и если в разрыв ветви вставить длинный кабель, то не будет происходить перезаряд его емкости. Утечки и помехи также становятся незначительными, за счет сравнительно большого протекающего тока, что в результате позволяет применить кабель практический любой длины. Из недостатков схемы можно указать, что такой каскод требует для работы довольно высокого напряжения питания, от 9 В и выше. Можно заставить его работать и от 5 вольт, но будет это не просто и, возможно, повлечет серьезное изменение схемы.

Описание схемы

Сам пробник состоит из фотодиода, резистора нагрузки сопротивлением 1 МОм, разделительного конденсатора, резистора утечки 3.3 МОм и транзистора Т1. Фотодиод при освещении начинает выдавать ток, который протекает по резистору нагрузки, тем самым создавая на нем падение напряжения. Это напряжение уже можно подавать на затвор транзистора Т1.

После некоторых попыток подать на фотодиод смещение, было выяснено, что заметного улучшения чувствительности это не приносит, зато проблем добавляет массу, поэтому от смещения решено было отказаться. Поскольку тахометр работает исключительно по перепадам светового потока, то целесообразно сделать его устойчивым к внешней засветке. Для этого применен разделительный конденсатор,и так как оставлять висящий в воздухе по постоянному току затвор нельзя, применен резистор утечки 3.3 МОм.

Для увеличения чувствительности можно несколько увеличить сопротивление первого резистора, но не сильно, при напряжении на фотодиоде выше 0,2 В резко начинает сказываться нелинейность последнего. Но, если работа предполагается в сильном затемнении, то можно спокойно увеличивать сопротивление даже в пять раз. Разделительный конденсатор и резистор утечки представляют собой фильтр ВЧ, и его номиналы могут быть выбраны в зависимости от требуемой минимальной рабочей частоты. А при работе в статическом режиме, например, в датчике освещения, данные элементы можно вообще не устанавливать. Также следует иметь ввиду, что сопротивление резистора утечки должно быть больше резистора нагрузки.

Далее напряжение, свободное от постоянной составляющей, подается на затвор полевого транзистора Т1, который преобразует его в ток, пригодный для передачи по кабелю.

В приемной части на транзисторе Т2 собран преобразователь ток-напряжение. Стабилитрон на 3.6 В стабилизирует потенциал на базе транзистора Т2. На эмиттере Т2 и стоке Т1 будет примерно на 0,6 вольт меньше, то есть в районе 3 вольт. Нагрузкой транзистора Т2 служит резистор 1.2К*, его сопротивление зависит от напряжения питания, напряжения на стабилитроне и начального тока стока транзистора Т1. Начальный ток стока применяемого транзистора оказался 3 мА, напряжение питания 9.5 вольт.

Читайте также:  Поделка кот своими руками пошагово

Напряжение коллектор-база должно быть минимум 2 В, а сопротивление нагрузки (для получения максимального усиления) как можно больше. При напряжении на коллекторе в районе 6 вольт, на резисторе остается 9,5-6=3,5 вольта, что при токе 3 мА дает сопротивление чуть меньше 1,2 ком. Так как, чем больше это сопротивление, тем больше усиление каскада, то нужно стремиться его увеличить. Раз напряжение питания задано, а уменьшать напряжение на транзисторах нельзя, остается подбирать транзистор Т1 с наименьшим начальным током стока и максимальной крутизной. При этом коэффициент усиления каскада будет небольшим, примерно 1. 2.

Выходной сигнал снимается с коллектора транзистора Т2. На транзисторе Т3 собран усилитель, который является частью тахометра и служит для согласования каскода с логикой схемы.

Резистор, отмеченный двумя звездочками, задает начальную точку Т3 и подбирается под конкретный транзистор по наивысшей чувствительности срабатывания.

Те, кого транзисторная схемотехника страшит или усиления в несколько раз не хватает, могут поставить операционный усилитель. В данном варианте схемы усиление определяется всего одним резистором обратной связи.

Конструкция

Пробник собран в корпусе от разъема BNC на фотодиоде ФД265А и транзисторе КП303Д. Транзистор Т2 вовсе со стертой маркировкой, но к нему не предъявляется никаких особых требований, разве что чтобы статический коэффициент передачи тока был не сильно мал, от 50 и выше. Полевой транзистор тоже можно применять любой марки нужного типа проводимости, желательно отобранный по начальному току и крутизне.

Данная схема была проверена на работу на коаксиальный кабель длиной 20 метров и не вызвала никаких нареканий. Автор материала — SecreTUseR.

Источник

Детекторы и датчики

Это ультразвуковой эхолокатор, с звуковой сигнализацией приближения на пороговое расстояние. Его можно использовать как сигнализатор приближения к чему-либо. В основе устройства лежит генератор ультразвука с акустической обратной связью. Элементами датчика являются ультразвуковой микрофон .

Это устройство предназначено для приблизительной оценки расстояния до объекта. Оно состоит из ИК-передатчика и ИК-приемника. Принцип действия основан на измерении уровня отраженного ИК-сигнала. Передающая схема построена на микросхеме D1. На её элементах сделан мультивибратор, генерирующий .

В охранных системах и системах автоматики применяются различные датчики.Здесь приводятся схемы трех проверенных опытным путем датчиков. Один акустический, другой сейсмический (реагирует на удары, вибрацию. ), третий оптический (реагирует на резкое изменение освещенности в помещении) .

Эта простая схема, собранная из подручных материалов, предназначена для включения нагрузки, например, осветительного прибора, когда в месте установки датчика — фоторезистора темно, и выключения его, когда светло. Такие приборы зачастую называют «сумеречными таймерами» .

Практически данное устройство представляет собой часы, соединенные с фотореле. Основой послужили электронные часы на микросхемах К176ИЕ12, К176ИЕЗ и К176ИЕ4, сделанные лет 10-15 тому назад. Переделка коснулась узла на микросхеме К176ИЕ12, который служит для генерации импульсов с периодом .

В статье предложены варианты пассивных и активных (на ОУ широкого применения и на специализированной микросхеме) датчиков, собранных на основе трансформатора тока. Нередко требуется измерять или контролировать ток, потребляемый от электрической сети различными нагрузками, например электроприборами .

Читайте также:  Ложка загребушка своими руками мастер класс

Схема очень простого детектора радиопередатчиков, построен на двух транзисторах и может найти маломощный передатчик работающий на частоте до 1000МГц. Не секрет, что многих людей в нашей стране охватила «шпиономания». Простые граждане, видят себя не менее чем Джеймсом Бондом, и при первой же .

Описанная в чешском радиолюбительском журнале схема позволяет идентифицировать не только изменения яркости объектов на мониторе, но и зафиксировать движение, например, людей или автомобилей в обозреваемом видеокамерой пространстве. По данным первоисточника, чувствительность системы столь .

Прибор предназначен для проверки идентичности различных веществ: жидких, сыпучих, органических и минеральных. Прибор позволяет сравнивать одинаковые вещества и обнаруживать в них примеси. Основное назначение прибора — экспресс-анализ, проводимый по относительным показаниям стрелочного индикатора .

Устройство предназначено для автоматического включения света, когда вы находитесь за рабочим столом (или перед мойкой на кухне) и выключения света, когда вас там нет. Многие забывают выключать свет на рабочем месте или на кухне, а это влечет за собой повышенный расход электроэнергии. На рисунке .

Источник

Простой датчик приближения

Датчики приближения бывают емкостными, ультразвуковыми, оптическими. Автор Instrictables под ником Electro maker придумал простой оптический датчик приближения. Неудобен он лишь тем, что ток через инфракрасный светодиод никак не промодулирован, а фотодиод, соответственно, реагирует и на непрерывное излучение и требует экранировки от других источников света (например, трубкой). Схема прибора показана ниже:

Мастер выбирает компоненты для самоделки. Инфракрасные светодиод и фотодиод:

Операционный усилитель LM358:

Светодиод видимого свечения:

Панель для микросхемы (необязательна):

Вместо светодиода можно подключить пищалку со встроенным генератором, тогда соответствующий резистор становится ненужным:

Подойдёт и пищалка без встроенного генератора, если собрать внешний генератор звуковой частоты своими руками. На такой макетной плате типа perfboard места хватит:

Если вы обошли несколько Фикс Прайсов, и во всех кончились вечные двигатели, придётся воспользоваться источником питания попроще:

Установив компоненты на плату, мастер соединяет их по схеме пайкой:

Фотодиод и оба светодиода, как и батарейку (или блок питания), необходимо подключить в указанной на схеме полярности, микросхему правильно ориентировать. Разработчику попались прозрачный инфракрасный светодиод и чёрный фотодиод, но бывает и наоборот. Определить, что из них чем является, помогут батарейка, резистор и любой телефон с камерой.

Фотодиод и резистор на 10 кОм образуют делитель напряжения. При освещении фотодиода инфракрасными лучами, отражёнными, например, от руки, напряжение в точке подключения операционного усилителя к делителю возрастает. ОУ включён таким образом, что он работает как компаратор. Он сравнивает напряжение, поступающее с делителя, с напряжением, поступающим с подвижного контакта подстроечного резистора. Таким образом можно регулировать порог срабатывания датчика, с одной стороны, исключив ложные срабатывания, а с другой — обеспечив уверенное обнаружение приближения.

Настроив порог срабатывания, мастер проверяет работу датчика:

Трубки, защищающей фотодиод от боковой засветки, здесь для наглядности нет, без неё схема правильно работает только при неярком окружающем освещении.

Небольшая домашка: что будет если поменять в делителе фотодиод и резистор местами, и одновременно поменять местами входы операционного усилителя?

Источник

Оцените статью
Своими руками