Самодельное охлаждение для видеокарты.
Вот решил написать статейку как я модернизировал охлаждение на своей Х1950ХТХ. Думаю, она многим пригодится, так как референсное охлаждение на Х1950ХТХ и уж темболее на Х1950ХТ, Х1900ХТХ, Х1900ХТ желает быть лучше. Многие скажут, что на Х1950ХТХ охлаждение и так справляется со своей задачей и тише, но меня оно тоже не устраивало, так как оно всёравно периодически во время игр поднимает обороты и его уже становится хорошо слышно. Сразу скажу, что моя система охлаждения выигрывает у референса от Х1950ХТХ градусов 15 и притом его совсем не слышно. Вроде даже больше, но я уже давно не проверял, так-то напишу что гарантированно. Эту схему я испробовал ещё на Х800ГТО потом на Х850ХТ затем на Х1800ГТО, Х1900ХТХ практически не меняя и вот теперь на Х1950ХТХ, но уже пришлось поменять вентилятор, так как у Х1950ХТХ вентилятор 4 выводной, а на предыдущих видеокартах их 3. И с 3 пиновым вентилем на Х1950ХТХ обороты от температуры не регулировались. Сама видеокарта с таким куллером тоже лучше охлаждается.
Главным достоинством этого охлаждения я считаю то, что оно очень легко в повторении, обойдётся в копейки и в случае чего можно всё вернуть на место для исключения проблем с гарантией.
Есть и минус, но я считаю его чисто индивидуальным. Система охлаждения занимает ещё 3 слота.
Итак, что нам понадобится? Я использовал боксовые куллеры которые идут с процессорами Интел.
\n
Здесь видно, что я использовал боксовый процессорныё куллер от 478 сокета. Рядом я положил тоже боксовый куллер, но от 775 сокета. Сам радиатор от него не понадобится, но если у вас Х1950ХТХ, то чтобы регулировались обороты, от него потребуется вентилятор, так как у него также как и на видеокарте 4 провода для управления вентилятором. На фотографии я просто собрал куллеры как они есть, но у меня на видеокарте стоит вентилятор от 775сокета. На нём видно, что я использую переходник для подключения в штекер на видяхе так как они разные. Я его не откусывал от референсного охлаждения, а нашел такойже и соединил с процессорным разъёмом. Можно просто спаять. Кстати такойже 4 пиновый штекер есть на некоторых шлейфах, который соединяет CD привод и мат. плату. Он висит аппендиксом и не используется обычно, так что смело откусывайте. Вот его фото.
\n
Если у Вас видеокарта с 3 пиновым штекером, то просто срезаете с одной стороны 1 вывод и всё.
Как я уже написал, в любом случае вам нужен радиатор от 478 сокета, а в зависимости от видяхи куллер от 478 или 775 сокета.
Снимаете родное охлаждение. В моем случае это выглядело так.
\n
Я оставил родной радиатор на памяти, так как он вроде медный и охлаждает кроме памяти ещё 2 маленькие микросхемы. И ктомуже он крепится отдельно от референсного охлаждения. Затем если вы сделаете также как я, нужно доработать радиатор, так как он немного не влезает. Если у вас не Х1950ХТХ, то тогда вообще ничего не надо пилить. В принципе и на Х1950ХТХ можно снять этот радиатор и поставить другие, например от Залмана.
Здесь видно, что радиатор пришлось немного подпилить с одной стороны, (на фото слева).
Специально оставил термопасту, чтобы было видно расположение ядра на нём.
\n
Здесь этот вырез уже справа. Видно как заворачиваются шурупы в радиатор.
\n
Чтобы правильно отметить куда вворачивать шурупы я делал так: Уже подогнанный радиатор (в случае с Х1950ХТХ) очень аккуратно прикладываем к чипу, как он должен стоять, осторожно, чтобы не сколоть ядро, переворачиваем плату и в отверстия вставляем зубочистки или спички без головок. Они зажимаются между рёбер радиатора, и мы вытаскиваем радиатор вместе со спичками. Затем вытаскиваем одну спичку и в этоже место вворачиваем шуруп, но следите, чтобы он был ввёрнут перпендикулярно плоскости, так как он будет стараться наклониться в сторону. Когда он завернут, обжимаете тонкими плоскогубцами рёбра как показано выше. Затем тоже самое делаете с остальными спичками.
Теперь как обычно мажете на чип термопасту и аккуратно прикладываете радиатор. Переворачиваете и вворачиваете шуруп, обязательно через пружинку и шайбу. Вот так это выглядит.
\n
С другой стороны получается так.
\n
Теперь надо только поставить вентилятор и подключить его к видеокарте.
Я поставил от 775 сокета и закрепил его так.
Видно, что вентилятор я закрутил с двух сторон саморезами между рёбер. С установкой родного 478 вопросов не должно быть.
На этой фотке также видно, что я сжимал рёбра на всю длину шурупа
\n
Теперь несколько слов о вентиляторах. Они у 478 сокета бывают 2 видов.
Которые идут с селеронами имеют мах. обороты 2600об/м. Которые идут с пнями работают на мах. 5600 об/м. У 775 сокета обороты на вентиляторах другие, точно не могу сказать.
Как подключить провода думаю сами разберётесь потому что на разных картах они по-разному подключаются.
Так выглядит видяха в собранном виде.
\n
А так она выглядит у меня в системном блоке.
Источник
Модернизация систем охлаждения видеокарт
Вступление
Эффективное охлаждение с невысоким уровнем шума необходимо не только для разгона, но и для повседневной эксплуатации видеокарты в штатном режиме.
Определить необходимость замены «стоковой» системы охлаждения можно по следующим критериям:
- Высокая температура ядра (90 градусов по Цельсию и более);
- Зависание при разгоне через несколько минут после запуска ресурсоемкого 3D приложения (перегрев ядра);
- Слишком высокая температура силовых элементов питания, микросхем памяти или платы в целом (определяется по показаниям встроенных датчиков, термопарой мультиметра, или на ощупь сквозь тонкий диэлектрик, например, целлофан);
- Штатная система охлаждения чрезмерно шумит.
реклама
В случае разгона центрального процессора вопрос повышенного тепловыделения легко решается покупкой кулера нужной мощности, благо в современных корпусах серьезных проблем (за исключением экстремально монструозных моделей) с их установкой не возникает. С видеокартами дело обстоит несколько иначе…
Нюансы и проблемы охлаждения видеокарт
Уже долгое время наиболее «прожорливым» элементом ПК являются не центральные процессоры, а видеокарты топовых моделей. Их энергопотребление достигает сотен ватт! Рассеять такое количество тепловой энергии относительно компактной системой охлаждения очень сложно. Именно поэтому при запуске ресурсоемкого 3D приложения мощные графические ускорители заявляют о своем присутствии в системном блоке пронзительным воем, издаваемым кулерами турбинного типа.
Разумеется, многие производители видеокарт стараются оснастить свои продукты эффективными системами охлаждения с невысоким уровнем шума. Такие решения, как правило, заметно сказываются на конечной стоимости продукта – видеокулеры верхнего ценового диапазона уже давно догнали по стоимости своих «центральнопроцессорных» собратьев.
В случае оснащения платы стандартным кулером очень часто возникает желание сменить его на что-то более тихое и эффективное. Но если его процессорный «родич» охлаждает лишь CPU, то система охлаждения (СО) видеокарты должна отводить тепло еще и от микросхем памяти, а также силовых элементов системы питания. Ситуацию усугубляет сильное ограничение массо-габаритных показателей для видеокулеров.
Кроме того, стоит отметить разное расположение крепежных отверстий и изобилие сильно отличающихся друг от друга систем питания не только для разных моделей карт, но и для одних и тех же. Многие производители выпускают видеокарты на так называемом «нереференсном» (нестандартном) дизайне печатной платы. В совокупности все это приводит к невозможности создать универсальную систему охлаждения. Именно поэтому такие модели видеокулеров, как Zalman VF3000, отличаются списком совместимости (в зависимости от него в конце наименования продукта ставится соответствующий буквенный индекс) и сравнительно высокой ценой.
Аналогичная ситуация наблюдается и у других производителей/моделей. Другими словами, замена штатной системы охлаждения видеокарты на другую, выпускаемую серийно, может оказаться не только затратной, но и невозможной для некоторых случаев (преимущественно для видеокарт с двумя GPU).
На данный момент ассортимент видеокулеров очень сильно уступает процессорным. Ситуацию усугубляет узкая совместимость мощных систем охлаждения с видеокартами по крепежу. В комплекте с СО видеокарт, как правило, прилагаются крепежные элементы для относительно небольшого количества моделей. В результате выбор покупателя сводится буквально к одной-двум моделям, доступным в продаже.
При разработке новых систем охлаждения графических ускорителей инженеры наступают на грабли, которые сами себе и подложили под ноги при проектировании видеокарт: слишком большое количество разных типоразмеров между крепежными отверстиями возле GPU и отсутствие каких-либо стандартов на охлаждение микросхем памяти и системы питания сильно усложняет процесс создания универсальной СО.
В результате некий гипотетически существующий видеокулер, который можно установить на разные модели, должен оснащаться излишне большим количеством не только крепежных элементов, но и радиаторов для силовых элементов питания. Вызывает недоумение столь долгое отсутствие стандарта расположения крепежных отверстий на месте системы питания карты. Без них очень сложно закрепить радиатор с требуемой площадью поверхности. Нехватка последней компенсируется либо повышенным обдувом, что сильно увеличивает шумность, либо вынуждает делать радиатор цельным по принципу «full-cover», что еще сильнее ограничивает универсальность системы охлаждения и вызывает необходимость применения толстых термопрокладок, значительно снижающих эффективность теплоотдачи.
реклама
На форумах постоянно возникают вопросы в стиле «станет ли этот кулер на мою видеокарту?». Исчерпывающий ответ удается получить не всегда. И в данный момент нет предпосылок к тому, что ситуация вскоре существенно изменится к лучшему — даже столь элементарная вещь, как разъем для подключения вентилятора СО, долгие годы почему-то различалась на разных моделях видеокарт.
Из-за этого при покупке таких систем охлаждения, как Zalman VF700, VF900, VF1000 и им подобных, приходилось подключать их к прилагаемым в комплекте регуляторам Zalman Fan Mate или же самостоятельно изготавливать переходник питания. В первом случае пользователь лишался такой полезной функции, как автоматическая регулировка скорости вращения вентилятора в зависимости от температуры, а во втором – тратил свое время на переходники и оплачивал не нужный ему регулятор питания.
Опытные оверклокеры, не желающие тратиться на довольно дорогую серийную систему охлаждения видеокарты, которую еще нужно найти в комплекте с необходимым крепежом, устанавливают на ядро карты относительно недорогой кулер от центрального процессора (может подойти и кулер из BOX-комплекта или оставшийся не у дел после апгрейда). На микросхемы памяти и элементы питания подойдут небольшие радиаторы, продающиеся в наборах.
К сожалению, этот вариант сегодня не является легко доступным из-за размеров и конструкции современных кулеров. К преимуществам такого подхода следует отнести достаточно высокую эффективность и низкую стоимость. К недостаткам – громоздкость процессорных кулеров, сложность выполнения крепежа, проблематичность охлаждения силовых элементов системы питания карты. С преимуществами все понятно. Но насколько значимы недостатки?
Для ответа на этот вопрос было решено попробовать установить три модели процессорных кулеров на несколько разных видеокарт.
Участники тестирования
Встречайте участников эксперимента.
- Zalman CPNS-7000AlCu;
- Боксовый кулер от процессора Intel Q6600;
- Scythe Samurai ZZ;
- Arctic Cooling Accelero XTREME Plus.
По типу крепежа процессорные кулеры можно разделить на две категории: использующие backplate (устанавливается с тыловой стороны материнской платы) с болтами или разного рода защелки, крепящиеся к пластиковой рамке материнской платы или посредством отверстий в последней.
«Болтовые» кулеры оснащаются разными крепежными элементами для каждого поддерживаемого процессорного разъема – это может упростить задачу монтажа такой системы охлаждения на видеокарту.
Кулеры на защелках проще всего поставить на карту, предварительно просверлив в их днище в нужных местах отверстия или применив длинные шпильки с резьбой. Далее с помощью саморезов выполняется резьба, а непосредственно при монтаже под шляпки винтов (или тех же саморезов) устанавливаются упругие прокладки и шайбы. При этом конструкция радиатора таких СО может сильно различаться – в некоторых случаях проще всего вкрутить четыре шурупа требуемой длины в межреберное пространство. Выделить какую-либо конструкцию, установка которой на видеокарту была бы проще других невозможно – все зависит от конкретного случая.
Методика тестирования
Перед тестированием для каждого из процессорных кулеров изготавливался и испытывался на надежность крепеж подо все видеокарты, на которые можно было установить данную СО. Далее выполнялась примерка видеокарты с модернизированной системой охлаждения сперва на открытом стенде, а затем, если проблем выявлено не было, в собранном ПК.
Во всех случаях (включая тестирование «стоковых» систем охлаждения) применялась термопаста КПТ-8 производства ОАО «Химтек». С обратной стороны платы устанавливались две термопары от цифровых мультиметров DT-838: ТП1 возле центра ядра и ТП2 в районе системы питания карты.
реклама
Монтаж термопары выполнялся следующим образом: в нужном месте наклеивался кусочек двустороннего термоскотча, на него наносилась капля термопасты, в нее погружался сам датчик и закреплялся сверху полоской обычного канцелярского скотча. Для обеспечения неподвижности термопар в момент снятия/установки СО провода закреплялись на видеокартах через угловые отверстия в плате с помощью изолированной проволочной скрутки. Установленные термопары оставались неподвижными до тех пор, пока карта не была полностью протестирована с каждой системой охлаждения.
Места установки термодатчиков приведены на фотографиях (GTX 550, GTX 460 и GTX 480 соответственно:
Возле ядер видеокарт всегда устанавливалась одна и та же термопара, подключенная к одному и тому же мультиметру. Другими словами, связки «место установки – термопара – мультиметр» оставались неизменными для всех вариантов.
реклама
Тестирование выполнялось на стенде, собранном в корпусе Chieftec BH-01B-B-B с открытой боковой стенкой при температуре воздуха в помещении 28°С. Видеокарты прогревались программой MSI Kombustor, основанной на программной коде Furmark, при полноэкранном режиме с разрешением 1920х1200 и сглаживании 16x MSAA. Значения температур фиксировались после того, как в течение десяти минут не происходило никаких изменений показаний.
Контроль температур осуществлялся программами MSI Kombustor и MSI Afterburner, а также цифровыми мультиметрами DT-838. С учетом погрешности мультиметров и не высокого качества термопар, к температурным показателям ТП1 и ТП2 следует относиться как к ориентировочным. Больший интерес будет представлять относительная разница между вариантами систем охлаждения.
По окончании тестирования каждой системы охлаждения она демонтировалась и производился контроль формы отпечатка термопасты – это важный показатель хорошего теплового контакта между поверхностью GPU и низом радиатора.
Уровень шума замерялся шумомером AR814. С учетом его погрешности в 1.5 дБ (в диапазоне от 30 дБ) полученные данные являются ориентировочными, как и в случае с температурными данными. Замер шумности системы охлаждения видеокарт производился с предварительной остановкой вентилятора процессорного кулера. Дополнительные два вентилятора типоразмерами 120х120х25 и 92х92х25 мм работали от напряжения +5 В и хоть сколько-нибудь значительного влияния не оказывали.
GeForce GTX 480 при тестировании со штатной системой охлаждения («full-cover» ватерблок) охлаждалась с помощью помпы-фонтана ViaAqua электрической мощностью 33 Вт (1800 л/ч) и радиатора-печи от ГАЗ 3110, продуваемого двумя вентиляторами типоразмера 120х120х25 мм, работающими при напряжении +7 В.
реклама
Воздушные системы охлаждения тестировались в двух режимах:
- Для «стоковых» кулеров скорость вращения вентилятора «авто»; для процессорных с помощью Zalman Fan Mate выставлялся комфортный уровень шума (чтобы СО видеокарты своим шумом не выделялась на фоне всей системы в целом).
- Для «стоковых» кулеров с помощью программы MSI AfterBurner скорость вращения вентилятора устанавливалась на уровне 100%, для процессорных тоже самое выполнялось с помощью Zalman Fan Mate.
Установка процессорных кулеров на видеокарты
Для установки процессорного кулера на видеокарту обычно применяют болты или шурупы – все зависит от конструкции радиатора. Из инструментов и материалов могут понадобиться: плоскогубцы, отвертка, кусачки, медная проволока диаметром около 1 мм, упругие прокладки (например, сантехнические для бытовых водосмесителей, то есть для обычных кранов), «болгарка» с диском по металлу. Могут пригодиться даже сварочный аппарат и токарный станок – настоящий оверклокер не остановится ни перед чем.
Zalman CPNS-7000AlCu
Первым пошел в дело Zalman CPNS 7000AlCu:
реклама
Ранее этот кулер долгое время эксплуатировался в нештатных режимах, в результате чего его основная крепежная планка пришла в негодность – пришлось изготавливать новую.
Проще всего использовать медную проволоку диаметром 0,8 или 1 мм, четыре болта диаметром 2,5 или 3 мм (длина не менее 15-25 мм), соответствующие гайки, шайбы и несколько резиновых упругих прокладок.
С помощью плоскогубец и кусачек изготавливаем вот такую деталь:
реклама
Для большей надежности в месте скрутки проволоку можно зачистить и после изготовления детали запаять. Но в процессе тестирования недостаточной прочности такого исполнения выявлено не было.
Далее примеряем кулер к видеокарте и выполняем вторую петельку со второй стороны проволоки так, чтобы продетые впоследствии сквозь петельки болтики попали в нужные отверстия вокруг GPU. Не забываем о шайбах, которые нужно установить под шляпки болтов. С обратной стороны карты устанавливаем резиновые прокладки, поверх них снова шайбы, затем гайки и аккуратно затягиваем. Не переусердствуйте. Болты нужно затягивать поочередно по 1-2 оборота, чтобы не допустить перекоса.
GeForce GTX 550 с установленным кулером выглядел следующим образом:
Примеряем видеокарту на открытом стенде:
реклама
Радиатор Zalman 7000AlCu своими ребрами перекрывает контакты видеокарты, которыми она устанавливается в слот PCI-E. Аккуратно подгибаем:
С обратной стороны карты крепеж выглядит так:
Этот же кулер аналогичным образом устанавливался на GTX 460.
Единственное отличие – длина проволочной детали. В остальном — все точно так же:
Те же прокладки установлены под шляпки болтов с обратной стороны карты:
Видеокарта без проблем установилась на открытом стенде (равно как и впоследствии на тестовом ПК):
По окончании тестирования был произведен осмотр отпечатка термопасты:
Площадь нижней поверхности радиатора Zalman 7000AlCu немного меньше теплораспределительной крышки ядра. Ничего страшного в этом нет – сам GPU заметно меньше.
Ради эксперимента Zalman 7000AlCu тестировался и на GTX 480:
Видеокарта с этим кулером легко установилась в примерочный стенд:
Да и отпечаток термопасты не вызывал нареканий:
Но результатов тестирования на сводных диаграммах связки GTX 480 + Zalman 7000AlCu вы не увидите – через три минуты работы MSI Kombustor температура ядра достигала 100°С и тестирование было прервано.
Источник