Четыре импульсных блока питания на IR2153
Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153. Все эти схемы были мною собраны и проверены в 2013-2015 годах. Сейчас, в 2017 году, я раскопал все эти схемы в своих архивах и спешу с вами поделиться. Пусть вас не смущает что не ко всем схемам есть фото собранных устройств, что на фото будут и не полностью собранные блоки питания, но это все что мне удалось найти в своих архивах.
Итак первый блок питания, условно назовем его «высоковольтным»:
Схема классическая для моих импульсных блоков питания. Драйвер запитывается непосредственно от сети через резистор, что позволяет снизить рассеиваемую на этом резисторе мощность, по сравнению с запиткой от шины +310В. Этот блок питания имеет схему мягкого старта (ограничения пускового тока) на реле. Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных цепях. Датчиком тока в ней служит резистор R11, а ток при котором срабатывает защита регулируется подстроечным резистором R10. При срабатывании защиты загорается светодиод HL1. Этот блок питания может обеспечить выходное двухполярное напряжение до +/-70В (с данными диодами во вторичной цепи блока питания). Импульсный трансформатор блока питания имеет одну первичную обмотку из 50 витков и четыре одинаковые вторичные обмотки по 23 витка. Сечение провода и сердечник трансформатора выбираются исходя из требуемой мощности, которую необходимо получить от конкретного блока питания.
Второй блок питания, условно его будем называть «ИБП с самопитанием»:
Этот блок имеет похожую с предыдущим блоком питания схему, но принципиальное отличие от предыдущего блока питания заключается в том, что в этой схеме, драйвер запитывает сам себя от отдельной обмотки трансформатора через гасящий резистор. Остальные узлы схемы идентичны предыдущей представленной схеме. Выходная мощность и выходное напряжение данного блока ограничено не только параметрами трансформатора, и возможностями драйвера IR2153, но и возможностями диодов примененных во вторичной цепи блока питания. В моем случае — это КД213А. С данными диодами, выходное напряжение не может быть более 90В, а выходной ток не более 2-3А. Выходной ток может быть больше только в случае применении радиаторов для охлаждения диодов КД213А. Стоит дополнительно остановиться на дросселе Т2. Этот дроссель мотается на общем кольцевом сердечнике (допускается использовать и другие типы сердечников), проводом соответствующего выходному току сечения. Трансформатор, как и в предыдущем случае, рассчитывается на соответствующую мощность с помощью специализированных компьютерных программ.
Блок питания номер три, условно назовем «мощный на 460х транзисторах» или просто «мощный 460»:
Эта схема уже более значительно отличается от предыдущих схем представленных выше. Основных больших отличий два: защита от короткого замыкания и перегрузки здесь выполнена на токовом трансформаторе, второе отличие заключается в наличии дополнительных двух транзисторов перед ключами, которые позволяют изолировать высокую входную емкость мощных ключей (IRFP460), от выхода драйвера. Еще одно небольшое и не существенное отличие заключается в том, что ограничительный резистор схемы мягкого старта, расположен не в шине +310В, как это было в предыдущих схемах, а в первичной цепи 230В. В схеме так же присутствует снаббер, включенный параллельно первичной обмотке импульсного трансформатора для улучшения качества работы блока питания. Как и в предыдущих схемах чувствительность защиты регулируется подстроечным резистором (в данном случае R12), а о срабатывание защиты сигнализирует светодиод HL1. Токовые трансформатор мотается на любом небольшом сердечнике который у вас окажется под рукой, вторичные обмотки мотаются проводом небольшого диаметра 0,2-0,3 мм, две обмотки по 50 витков, а первична обмотка представляет собой один виток провода достаточного для вашей выходной мощности сечения.
И последний на сегодня импульсник — это «импульсный блок питания для лампочек», будем его условно так называть.
Да да, не удивляйтесь. Однажды появилась необходимость собрать гитарный предусилитель, но под рукой не оказалось необходимого трансформатора и тогда меня очень выручил данный импульсник, который был построен именно по тому случаю. Схема отличается от трех предыдущих своей максимальной простотой. Схема не имеет как таковой защиты от короткого замыкания в нагрузке, но необходимости в такой защите в данном случае нет, так как выходной ток по вторичной шине +260В ограничен резистором R6, а выходной ток по вторичной шине +5В — внутренней схемой защиты от перегрузки стабилизатора 7805. R1 ограничивает максимальный пусковой ток и помогает отсекать сетевые помехи.
Общие рекомендации:
- Импульсный трансформатор для каждой из схем необходимо рассчитывать в соответствии с вашими личными требованиями к блоку питания и вашими возможностями, поэтому конкретные намоточные данные я не привожу.
- Для расчета импульсного трансформатора очень удобно пользоваться программами «Старичка» — Lite-CalcIT и RingFerriteExtraSoft.
- Перед включением в сеть импульсного блока питания необходимо тщательно проверить монтаж на отсутствие ошибок, «соплей» на плате и так далее
- Обязательно необходимо промывать плату со стороны монтажа бензином, ацетоном, керосином, любым растворителем или спиртом для полного удаления остатков флюса. Импульсный блок питания работает на высокой частоте и даже незначительная паразитная проводимость или емкость может привести к тому, что собранный из исправных деталей блок питания не заработает или взорвется при первом же включении.
- Первое включение необходимо производить только с ограничением тока, его можно ограничить либо мощным резистором, либо мощной лампой накаливания, могут быть и другие варианты.
- Необходимо помнить и никогда не забывать о правилах электробезопасности. В каждой из схем блока питания присутствует опасное для жизни напряжение.
Внимание! При покупке IRF740 необходимо быть крайне внимательным чтобы не нарваться на подделку, которые встречаются очень часто, особенно на Aliexpress, для этого важно знать как выглядит поддельный IRF740.
На иллюстрации сверху, показаны два вида оригинальных IRF740 производства Vishay и производства IR, а также типичная подделка, которая часто встречается на Aliexpress и в других магазинах.
Кроме внешнего вида, подделку от оригинала легко отличить с помощью транзистор-тестера:
Если установить в панельку транзистор-тестера оригинальный транзистор, то отображаемое значение емкость будет: C=2,6. 2,7 нФ. Подделки имеют гораздо меньший кристалл, чем оригинальный транзистор и поэтому транзистор-тестер, в случае установки в него поддельного транзистора, выдаст другое — меньшее значение емкости: C=0,9. 1,5 нФ. Постойте, но ведь в даташите IRF740 указана емкость 1,4 нФ, почему тогда оригинал должен иметь емкость около 2,7 нФ ? Подобный вопрос обязательно должен у кого-нибудь возникнуть. Отвечаю. Емкость указанная в даташите измерена при совершенно других условиях (напряжение затвор-исток = 0 В, напряжение сток-исток = 25 В, частота = 1 МГц), отличных от тех, при которых измеряет емкость транзистор-тестер, поэтому сравнивать значение емкостей из транзистор-тестера и даташита — просто бессмысленно.
И последнее. Кто-то наверняка сказал: ну и что, что не оригинал, зато дешевле, какая разница?! Хорошо, если бы разница была только в цене, но нет! Оригинальный транзистор — это транзистор, который соответствует всем заявленным производителем параметрам из даташита. Поддельный транзистор — это транзистор, который не соответствует никаким параметрам. По сути, подделка — это другой транзистор. Подделка, на которой написано «IRF740», по своим параметрам может являться чем угодно, но только не IRF740. Часто подделка — это другой, более дешевый и маломощный транзистор, перемаркированный под другой, более дорогой транзистор. Другими словами, по-простому, если собрав ИИП на оригинальных IRF740 вы сможете легко и непринужденно, долговременно снять 300 Вт мощности, а кратковременно и того больше, то собрав тот же ИИП на поддельных «IRF740», вы можете получить фейерверк при попытке снять более 100 Вт, а иногда даже при первом же включении.
Источник
Однополярный импульсный блок питания своими руками
Как видно из таблицы отличия между микросхемами не очень большие — все три имеют одинаковый шунтирующий стабилитрон по питанию, напряжения питания запуска и остановки у всех трех почти одинаковая. Разница заключается лишь в максимальном токе оконечного каскада, от которого зависит какими силовыми транзисторами и на каких частотах микросхемы могут управлять. Как не странно, но самая распиаренная IR2153 оказалась не рыбой, не мясом — у нее не нормирован максимальный ток последнего каскада драйверов, да и время нарастания-спада несколько затянуто. По стоимости они тоже отличаются — IR2153 самая дешовая, а вот IR2155 сама дорогая.
Частота генератора, она частота преобразования ( на 2 делить не нужно ) для IR2151 и IR2155 определяется по формулам, приведенным ниже, а частоту IR2153 можно определить из графика:
Для того, чтобы выяснить какими транзисторами можно управлять микросхемами IR2151, IR2153 и IR2155 следует знать параметры данных транзисторов. Наибольший интерес при состыковке микросхемы и силовых транзисторов представляет энергия затвора Qg, поскольку именно она будет влиять на мгновенные значения максимального тока драйверов микросхемы, а значит потребуется таблица с параметрами транзисторов. Здесь ОСОБОЕ внимание следует обратить на производителя, поскольку этот параметр у разных производителей отличается. Наиболее наглядно это видно на примере транзистора IRFP450.
Прекрасно понимаю, что для разового изготовления блока питания десяти-двадцати транзисторов все таки многовато, тем не менее на каждый тип транзистора повесил ссылку — обычно я покупаю там. Так что нажимайте, смотрите цены, сравнивайте с розницей и вероятностью купить левак. Разумеется я не утверждаю, что на Али только честные продавцы и весь товар наивысшего качества — жуликов везде полно. Однако если заказывать транзисторы, которые производятся непосредственно в Китае на дерьмо наскочить гораздо сложнее. И именно по этой причине я предпочитаю транзисторы STP и STW, причем даже не брезгую покупать с разборки, т.е. Б/У.
Как известно, наиболее точно динамические свойства полевого транзистора характеризуют не значение его паразитных емкостей, а полный заряд затвора — Q g . Значение параметра Q g связывает между собой математическим путем — импульсный ток затвора с временем переключения транзистора, тем самым предоставляя возможность разработчику правильно рассчитать узел управления.
К примеру, у полевого транзистора IRF840 при токе стока I s = 8 A, напряжении сток — исток U ds = 400 В и напряжении затвор — исток U gs = 10 В полный заряд затвора равен Q g = 63 нКл. При неизменно напряжении затвор — исток заряд затвора уменьшается с увеличением тока стока Is и с уменьшением напряжения сток — исток Ugs.
Произведем расчет параметров схемы управления при условии, что необходимо достигнуть времени включения транзистора ton = 120 нс. Для этого ток управления драйвера должен иметь значение:
I g = Q g / t on = 63 х 10 -9 / 120 х 10 –9 = 0,525 (A) (1)
При амплитуде импульсов управляющего напряжения на затворе Ug = 15 В сумма выходного сопротивления драйвера и сопротивления ограничительного резистора не должна превышать:
R max = U g / I g = 15 / 0,525 = 29 (Ом) (2)
Расчитаем выходное выходное сопротивление драйверного каскада для микросхемы IR2155:
R on = U cc / I max = 15V / 210mA = 71,43 ohms
R off = U cc / I max = 15V / 420mA = 33,71 ohms
Учитывая расчетное значение по формуле (2) Rmax = 29 Ом приходим к заключению, что с драйвером IR2155 заданное быстродействие транзистора IRF840 получить невозможно. Если в цепи затвора будет установлен резистор Rg = 22 Ом, время включении транзистора определим следующим образом:
RE on = R on + R gate, где RE — суммарное сопротивление, R out — выходное сопротивление драйвера, R gate — сопротивление, установленное в цепь затвора силового транзистора = 71,43 + 22 = 93,43 ohms;
I on = U g / RE on, где I on — ток открытия, U g — величина управляющего напряжения затвора = 15 / 93,43 = 160mA;
t on = Q g / I on = 63 х 10-9 / 0,16 = 392nS
Время выключения можно расчитать используюя теже формулы:
RE off = R out + R gate, где RE — суммарное сопротивление, R out — выходное сопротивление драйвера, R gate — сопротивление, установленное в цепь затвора силового транзистора = 36,71 + 22 = 57,71 ohms;
I off = U g / RE off, где I off — ток открытия, U g — величина управляющего напряжения затвора = 15 / 58 = 259mA;
t off = Q g / I off = 63 х 10-9 / 0,26 = 242nS
К получившимся величинам необходимо добавить время собственного открытия — закрытия транзистора в результате чего реальное время t on составит 392 + 40 = 432nS, а t off 242 + 80 = 322nS.
Теперь осталось убедится в том, что один силовой транзистор успеет полность закрыться до того, как второй начнет открываться. Для этого сложим t on и t off получая 432 + 322 = 754 nS, т.е. 0,754 µS. Для чего это нужно? Дело в том, что у любой из микросхем, будь то IR2151, или IR2153, или IR2155 фиксированное значение DEAD TIME, которое составляет 1,2 µS и не зависит от частоты задающего генератора. В даташнике упоминается, что Deadtime (typ.) 1.2 µs, но там же приводится и сильно смущающий рисунок из которого напрашивается вывод, что DEAD TIME составляет 10% от длительности управляющего импульса:
Чтобы развеять сомнения была включена микросхема и подключен к ней двухканальный осцилограф:
Питание составляло 15 V, а частота получилась 96 кГц. Как видно из фотографии при развертке 1 µS длительность паузы составляет совсем немного больше одного деления, что как раз и соответсвует примерно 1,2 µS. Далее уменьшаем частоту и видим следующее:
Как видно из фото при частоте 47 кГц время паузы практически не изменилось, следовательно вывеска, гласящая, что Deadtime (typ.) 1.2 µs является истинной.
Поскольку микросхем уже работала нельзя было удержаться еще от одного эксперимента — снизить напряжение питания, чтобы убедиться, что частота генератора увеличится. В результате получилась следующая картинка:
Однако ожидания не оправдались — вместо увеличения частоты произошло ее уменьшение, причем менее чем на 2%, чем вообще можно принебречь и отметить, что микросхема IR2153 держит частоту достаточно стабильно — напряжение питания изменилось более чем на 30%. Так же следует отметить, что несколько увеличилось время паузы. Этот факт несколько радует — при уменьшении управляющего напряжения немного увелифивается время открытия — закрытия силовых транзисторов и увеличение паузы в данном случае будет весьма полезным.
Так же было выяснено, что UV DETECT прекрасно справляется со своей функцией — при дальнейшем снижении напряжения питания генератор останавливался, а при увеличии микросхема снова запускалась.
Теперь вернемся к нашей математике по результатам которой мы выснили, что при установленных в затворах резисторах на 22 Ома время закрытия и открытия у нас равно 0,754 µS для транзистора IRF840, что меньше паузы в 1,2 µS, дающую самой микросхемой.
Таким образом при микросхема IR2155 через резисторы 22 Ома вполне нормально сможет управлять IRF840, а вот IR2151 скорей всего прикажет долго жить, поскольку для закрытия — открытия транзисторов нам потребовался ток в 259 mA и 160 mA соответсвенно, а у нее максимальные значения составляют 210 mA и 100 ma. Конечно же можно увеличить сопротивления, установленные в затворы силовых транзисторов, но в этом случае существует риск выйти за пределы DEAD TIME. Чтобы не заниматься гаданием на кофейной гуще была составлена таблица в EXCEL, которую можно взять ЗДЕСЬ. Подразумевается, что напряжение питание микросхемы составляет 15 В.
Для снижения коммутационных помех и некоторого уменьшения времени закрывания силовых транзисторов в импульсных блоках питания используют шунтирование либо силового транзистора последовательно сединенными резистором и конденсатором, либо такой же цепочкой шунтируют сам силовой трансформатор. Данный узел называется снаббером. Резистор снабберной цепи выбирают номиналом в 5–10 раз больше сопротивления сток — исток полевого транзистора в открытом состоянии. Емкость конденсатора цепи определяется из выражения:
С = tdt/30 х R
где tdt — время паузы на переключения верхнего и нижнего транзисторов. Исходя из того, что продолжительность переходного процесса, равная 3RC, должна быть 10 раз меньше длительности значения мертвого времени tdt.
Демпфирование задерживает моменты открывания и закрывания полевого транзистора относительно перепадов управляющего напряжения на его затворе и уменьшает скорость изменения напряжения между стоком и затвором. В итоге пиковые значения импульсов затекающего тока меньше, а их длительность больше. Почти не изменяя времени включения, демпфирующая цепь заметно уменьшает время выключения полевого транзистора и ограничивает спектр создаваемых радиопомех.
С теорией немного разобрались, можно приступить и практическим схемам.
Самой простой схемой импульсного блока питания на IR2153 является электронный трансформатор с минимумом функций: