Нониус для токарного станка своими руками

Содержание
  1. Измерение деталей штангенциркулем
  2. RZ296 › Блог › Установка «электронных шестеренок» на мой токарный станок
  3. Применение — нониус
  4. Назначение оборудования
  5. Пошаговый процесс сборки устройства
  6. 3.3.3 Определение погрешности штангенциркулей
  7. Изготовление станка на базе электродрели
  8. Статичный люнет и его строение
  9. Что можно измерить штангенциркулем?
  10. 1) Внешний размер детали (предмета)
  11. 2) Толщину детали (предмета)
  12. 3) Внутренний размер детали (предмета)
  13. 4) Глубину детали (предмета)
  14. Изготовление и устройство токарного станка по металлу своими руками
  15. Проектирование и чертежи токарного станка по металлу для гаража
  16. Выбираем электродвигатель для самодельного токарного станка
  17. Порядок сборки токарного станка по металлу
  18. Делаем своими руками токарный станок из дрели
  19. Отрывок, характеризующий Нониус
  20. Подвижный люнет и его строение
  21. Штангенциркуль Википедия
  22. Устройство
  23. Снятие показаний
  24. Для чего он нужен?
  25. Штангенциркуль — Википедия. Что такое Штангенциркуль
  26. Устройство
  27. Снятие показаний
  28. Виды штангенциркулей
  29. Плюсы и минусы устройства
  30. Какие бывают люнеты, их устройство
  31. Люнет неподвижной конструкции
  32. Люнет подвижной конструкции
  33. РАСЧЕТ И ПОСТРОЕНИЕ ШКАЛЫ НОНИУСА
  34. Из чего состоит токарный станок: основные узлы
  35. Станина
  36. Суппорт токарного станка
  37. Изготовление своими руками передней бабки токарного станка

Измерение деталей штангенциркулем

RZ296 › Блог › Установка «электронных шестеренок» на мой токарный станок

У моего токарного станка с завода есть одна неудобная особенность- шаг подачи или нарезания резьбы выставляется сменными шестернями. Смена шага- полчаса установки и настройки шестерен, затем еще полчаса на обратные манипуляции. Также отсутствует возможность нарезать левую резьбу, ну и автоподача только влево. Выход есть: купил у одного форумчанина с chipmaker.ru блок для «электронных шестерен», состоящий из энкодера, крепящегося на шпиндель, блока управления и кабелей. Помимо возможности нарезать любую резьбу с произвольным шагом от 0.001 до 4.500 мм появилась функция делительной головки (показывает угол поворота шпинделя с точностью 0.05 градуса), появилась асинхронная подача от 5 до 132 мм/мин и синхронная от 0.01 до 0.25 мм/об, левые и правые. Оставалось только докупить шаговый двигатель, блок питания, контроллер двигателя, зубчатый ремень и собрать все воедино, сделав шестерни для зубчатого ремня и пластину крепления двигателя.
Устанавливать энкодер на шпиндель- самая кропотливая и ответственная, я считаю, часть установки. Корпус энкодера, шедший в комплекте поставки, пришлось доработать- расточить центральные отверстия в самом корпусе и его крышке (корпус делался универсальным, поэтому отверстие растачивается по месту), просверлить крепежные отверстия. Корпус к ПБ крепится через латунные втулки высотой 8 мм, энкодер крепится на втулке, поджимающей задний подшипник шпинделя, для этого выточил переходную втулку из алюминия, которая крепится на вышеупомянутую втулку:

Вывел минимальные биения посадочного фланца энкодера- получилось 0.03 мм, приклеил диск и долго и тщательно подбирал положение оптического датчика- между светодиодом и фототранзистором зазор минимальный, тереться ничего не должно. Для регулировки положения клеил на плату датчика снизу изоленту и плавно закручивал крепежные винты. Провод вывел в полость ПБ через просверленное отверстие.

Панель повесил на проволочки, ибо очень хотелось проверить в работе плату:

Блок питания я использовал Omron, 25 вольт, 2.5 ампера, рассчитанный на установку на DIN-рейке. Лишенный корпуса, блок уместился в электроящик сзади станка. Регулировкой напряжения поднял напряжение на выходе до 29 вольт:

Так как блок управления делался в расчете на установку на Optimum, а у моего клона панель отличается, мне пришлось изготовить новую панель из алюминия, оклеить ее пленкой и лазером выгравировать нужные мне надписи на ней, лазер на работе имеется. На панель переехал и амперметр:

Было интересно, как обстоят дела с ошибками энкодера, проверял визуально: нулевое гнездо для ключа расположил на глаз вертикально вверх, сбросил на 0 счетчик угла поворота шпинделя и включил станок на максимальные обороты (1880) на 15 минут. Выключил и проверил, где находится 0 градусов- собственно, нулевое гнездо так и осталось строго сверху. Отличный результат, учитывая что за 15 минут было совершено около 28000 оборотов.

Качество изготовления комплекта очень высокое, корпус энкодера изготовлен из оргстекла на фрезерном станке с ЧПУ, надо полагать, плата блока управления промышленного качества- с маской, с качественным монтажом.

А тем временем мне прислали шаговый двигатель, драйвер для него и зубчатый ремень:

Занялся изготовлением зубчатых шкивов. Для этого по пластилиновому слепку ремня выточил из Ст45 фрезу для Дремеля, заточил, затыловал, закалил, еще подточил. Работает отлично. Дремель подручными средствами был закреплен во фрезерном приспособлении:

Позже хочу сделать нормальное крепление с возможностью наклона шпинделя, чтобы можно было резать червячные шестерни. Шкивы на 18 зубьев:

Применение — нониус

Применение передвижных нониусов на лимбах 7и 8 и наличие высокоточных шлифованных винтов 4 и 2 позволяют определять величину перемещения поперечных салазок 3 и установочного стола 5 с точностью до 0 005 мм.

Шкала прибора с учетом применения нониуса разделена на 1800 делений.

Шкала прибора, с учетом применения нониуса, разделена на 1800 делений.

Измерительный конденсатор к диэлькометру.

Шкала прибора, с учетом применения нониуса, разделена на 1800 делении.

Штангенциркуль с точностью подсчета 0 1 мм.

Штангенциркуль, как и все штангенинструменты, основан на применении нониуса, по которому производится отсчет дробных долей делений основной шкалы. Штангенциркуль ( рис. 6 — 1) состоит из штанги 1 с миллиметровыми делениями.

Повышение точности отсчета по основной шкале угломеров обеспечивается, как и у штангенинструмен-тов, применением штрихового нониуса. Принцип построения нониуса угломеров аналогичен построению нониуса штангенинструментов. Различие между ними заключается только в том, что у угломеров отсчет производится в долях градуса — минутах, а у штангенинструментов — в долях миллиметра.

Развитие проекционных отсчетных устройств происходит главным образом в направлении расширения пределов прямых показаний по шкале при ограничении угла отклонения коромысла. Это достигается применением нониусов, позволяющих отсчитывать доли делений, благодаря чему цена деления, а следовательно, и пределы измерений по шкале могут быть увеличены.

Обычные модели рефрактометров Аббе имеют неравномерные шкалы с ценой деления Ы0 — 3 ( иногда 0 5 — 10 — 3); оценка четвертого десятичного знака производится визуальной интерполяцией. Неравномерность шкал п исключает возможность применения нониусов или других приспособлений для более точного объективного отсчета.

При отсчете значительных линейных перемещений кареток, работающих в продольных направляющих, для уменьшения размеров каретки ( а следовательно, и длины направляющих — см. гл. Для простых угловых ( круговых) шкал место их расположения ( на подвижных или неподвижных частях) не имеет значения. Однако в случае необходимости применения нониуса его следует располагать только на неподвижной части прибора.

Погрешность определяется ошибкой отсчета. При пользовании миллиметровой шкалой погрешность составляет 0 3 — 0 5 мм, с применением нониуса 0 1 — 0 2 мм.

Особенно широко пользовались этими единицами измерений и соответствующими мерами в астрономии и геодезии. В промышленности практически ограничивались градусами и иногда минутами, хотя при побочных работах ( например, при съемках в горных выработках) использовались даже секунды, поскольку углы простирания и углы падения пластов надлежало определять с помощью теодолита в градусах, минутах и секундах. На территории России были определены в градусах, минутах и секундах географические координаты десятков тысяч пунктов. Диапазон измеряемых углов значительно возрос в сторону малых значений, чему особенно способствовало применение нониуса и микроскопов с большой разрешающей силой. В некоторых случаях значения измеряемых углов были таковы, что приходилось пользоваться только секундами и иос долями. Долями секунды особенно широко пользовались при обработке результатов измерений.

Штангенциркуль с нониусом.

Штангенциркули, предназначенные для измерений с высокой точностью, снабжены приспособлением 6 для микрометрической подачи, состоящим из винта, гайки, движка и зажима. Губки штангенциркуля для наружных измерений имеют плоские измерительные поверхности, а для внутренних измерений-цилиндрические. На штанге нанесена масштабная шкала с ценой деления 1 мм. Каждое пятое деление штанги отмечается более длинным штрихом, чем остальные, и соответствующей цифрой. На скошенной кромке рамки нанесена шкала нониуса 7, служащего для отсчета дробных долей деления шкалы штанги. Применение нониуса повышает точность отсчета. Стандарт предусматривает точность отсчета по нониусу-0 1; 0 05 и 0 02 мм.

Назначение оборудования

В технологии обработки материалов резанием принято различать установки для обработки по классам точности. Основным критерием является материал, которому требуется придать определенные формы и параметры:

Для домашних условий создают деревообрабатывающее оборудование, а при необходимости работы над металлическими заготовками нужны станки по металлу. Основные отличия заключаются в приводе для инструмента.

Если нужно вытачивать деревянную деталь, используют упор. На него опирают инструмент. Продольную и поперечную подачу выполняют вручную.

Расшифровывают эту аббревиатуру так: станок, приспособление, инструмент, деталь. Все эти элементы должны сохранять определенную жёсткость, тогда гарантируется требуемая точность при обработке.

Пошаговый процесс сборки устройства

Когда выточены все необходимые детали, необходимо их собрать в единую конструкцию.

На сборочном столе собирают детали будущего настольного токарного станка.

Решено конструкцию изготавливать из фланцев, выточенных из кругляка диаметром 120 мм. Для облегчения в них просверлено центральное отверстие Ø 55 мм. Имеются три отверстия Ø 20 мм.

С торца просверлены дополнительные отверстия для резьбовых фиксаторов. Винтами М6 можно закрепить остальные детали в заданном положении.

Для будущего ходового винта запрессована бронзовая втулка. Внутренний Ø 16 мм.

Направляющие станины изготовлены из ковкого чугуна. В них изготовлены продольные проточки. Цилиндрическая часть позволяет фиксироваться в отверстиях фланцев.

Вставляется направляющая так, чтобы совместить все имеющиеся элементы.

Чтобы выдержать заданное расстояние используются дистанционные втулки. Их устанавливают в распор между фланцами.

Вторая направляющая изготовлена точно также как и первая.

Собрав основание для передней бабки, приступают к сборке задней.

Каркас стягивают гайками. Создана основа будущей станины.

Станок буде стоять, опираясь на передние упоры. Их крепят винтами к фланцам.

По направляющим перемещаются опорные втулки. На них будут монтироваться суппорт и задняя бабка. Длинная втулка работает направляющей, а короткая – является поддерживающей. Проточки на валиках не позволяют смещаться.

Конструктивно опорные втулки выполнены разной длины. Такое решение позволяет увеличить рабочий ход.

Длина обрабатываемых деталей может быть достаточной, чтобы детали имели размеры до 250 мм.

Площадка для суппорта крепится винтами М6.

Отверстия для площадки сверлят по месту. Эта деталь изготавливается индивидуально. Если попытаться сделать ее только по чертежу, то может проявиться эффект заклинивания.

По аналогии изготавливается площадка задней бабки. Ее также сверлят по месту. Нужно обеспечить скользящее перемещение по направляющим.

Читайте также:  Как фотографировать свои руки

Нужно обеспечить жесткость станине. Для передней бабки выточено специальное цилиндрическое полукольцо. Оно крепится болтами к фланцам.

Перемещение инструментов на суппорте или задней бабке осуществляется по ходовому винту. На нем протачивается прямоугольная резьба, имеющая небольшой наклон (12,5 ⁰). При вращении ходового винта детали, закрепленные на нем, перемещаются вперед или назад. Зависит от направления вращения.

Отверстие с запрессованной втулкой создавалось для ходового винта.

Чтобы винт свободно вращался, но сам не смещался вдоль своей оси, используются упорные подшипники. Их ставят спереди и сзади от задней опоры.

Для предотвращения осевого перемещения ходового винта устанавливается фиксирующая втулка. Она крепится болтом М6. Теперь винт не будет смещаться вдоль оси, но вращаться может.

Поверх фиксирующей втулки ставится нониус (приспособление с насечками). Один оборот винта перемещает суппорт или заднюю бабку на 10 мм. Ориентируясь по шкале, можно выполнять точное смещение в продольном направлении.

Чтобы вращать ходовой винт, устанавливается маховичок. Небольшая рукоятка позволяет легко вращать маховик.

Ориентироваться помогает риска. Глядя на нее, задают нужное осевое смещение.

Станина станка собрана. Теперь нужно установить переднюю бабку. В ней будет фиксироваться деталь.

На пластинах устанавливают направляющие поперечного перемещения.

Шкивы можно легко снять и установить на шпиндель.

Сам шпиндель устанавливается внутри центральной втулки.

Между шпинделем и втулкой имеются радиальные подшипники. Они дают свободное вращение.

Центральная втулка крепится болтами к станине.

После установки подшипников монтируется шпиндель с трехкулачковым патроном. Внутри шпинделя проточено отверстие Ø 35 мм. При необходимости заготовки меньшего диаметра могут проходить сквозь него.

Станок готов. Привод осуществляется через клиновые ремни от электродвигателя, установленного в стороне.

Видео: токарный мини станок своими руками.

3.3.3 Определение погрешности штангенциркулей

История создания штангенциркуля и интересные факты про него

Погрешность штангенциркулей определяют по конце­вым мерам длины. Блок концевых мер длины помещают между измерительными поверхностями губок штангенциркуля. Усилие сдвигания губок должно обеспечивать нормальное скольжение из­мерительных поверхностей губок по измерительным поверхностям концевых мер длины при отпущенном стопорном винте рамки. Длинное ребро измерительной поверхности губки должно быть перпендикулярно к длинному ребру концевой меры длины и нахо­диться в середине измерительной поверхности.

В одной из поверяемых точек погрешность определяют при зажатом стопорном винте рамки, при этом должно сохраняться нормальное скольжение измерительных поверхностей губок по измерительным поверхностям концевых мер.

У штангенциркулей со значением отсчета по нониусу 0,05 мм, выпускаемых из производства, погрешность определяют в шести точках; допускается определять погрешность в трех точках при условии отклонения от прямолинейности базовой поверхности штанги, по которой базируется рамка, не более 0,02 мм. У штан­генциркулей со значением отсчета по нониусу 0,1 мм, выпускае­мых из производства, погрешность определяют в трех точках.

У штангенциркулей, выпускаемых из ремонта и находящихся в эксплуатации, погрешность определяют в трех точках, равно- мерно расположенных по длине штанги и нониуса.

Погрешность определяют при помощи разметочных губок у штангенциркулей типа ШЦ-Н одновременно с определением пог­решности измерительных губок в трех точках, равномерно распо­ложенных по длине штанги и нониуса.

При поверке штангенциркулей класса точности 1 со значением отсчета по нониусу 0,1 мм несовпадение штрихов основной шкалы и шкалы нониуса, соответствующих действительному размеру бло­ка мер, измеряют при помощи микроскопа.

Несовпадение штрихов равно погрешности штангенциркуля в поверяемой точке.

Погрешность штангенциркулей, выпускаемых из ремонта и на­ходящихся в эксплуатации, на участке шкалы свыше 500 мм до­пускается определять микрометрическими нутромерами по ГОСТ 10-75.

Погрешность для каждой пары губок не должна превышать значений, установленных в таблице 3.

Одновременно проверяют нулевую установку штангенциркуля.

Для штангенциркулей типов ШЦ-I и ШЦТ-I при сдвинутых до соприкосновения губках смещение штриха нониуса должно быть в плюсовую сторону. Смещение нулевого штриха опреде­ляют при помощи концевой меры длиной 1,05 мм, которую пере­мещают между измерительными поверхностями губок. При этом показание штангенциркуля должно быть не более 1,1 мм.

Для штангенциркулей типов ШЦ-I и ШЦТ-I класса точности 2, выпускаемых из ремонта находящихся в эксплуатации, допу­скается смещение нулевого штриха нониуса до минус 0,1 мм при сдвинутых до соприкосновения губках.

При определении погрешности штангенциркуля результаты измерения следует занести в таблицу 3.

Таблица 3 – Обработка результатов измерения

Размер блока плоскопараллельных концевых мер длины Хб 1,2 мм 21,50 мм 134 мм
Отсчет по шкале штангенциркуля Хш
Разность значений Хб-Хш

Наибольшее значение (по модулю) разности (Хб – Хш) принима­ется за основную погрешность штангенциркуля. Результаты поверки записываются в таблицу 4. Затем оформляется паспорт на средство измерения.

Таблица 4 – Результаты поверки штангенциркулей

Наименование операции Допускаемое значение Результат поверки
1 Внешний осмотр
2 Опробование
3 Определение отклонения от и прямолинейности измерительных поверхностей губок
4 Определение отклонения от плоскостности плоских измерительных поверхностей губок
5 Определение погрешности штангенциркуля

1. Назначение и принцип действия инструмента.

2. Какие погрешности могут появиться при измерении штангенциркулем?

3. Как снимать отчет по нониусу?

При изучении практической работы рекомендуется использовать следующие учебники и документы:

1. И. И. Балонкин, А. К. Кутай. Точность и производственный контроль в машиностроении. — М.: Машиностроение. 1983.

2. А. С. Васильев. Основы метрологии и технические измерения. М: Машиностроение. 1996.

3. ГОСТ 166 — 89 (СТ СЭВ 704 — 77, СТ СЭВ 1309 – 78, ИСО 35РТ — 78 ) «ГСИ. Штангенциркули. Технические условия».

4. ГОСТ 8.113 – 84 «ГСИ. Методы и средства поверки штангенциркулей».

Изготовление станка на базе электродрели

Если нужно вытачивать детали маленького формата, то станок можно изготовить из электродрели. Конечно, крупную деталь проточить не получится, но небольшие изделия можно изготовить на небольшом устройстве. В мастерской оно не займет много места.

Небольшой станок, максимальный диаметр детали составляет 13 мм. Станина сваривается из швеллера 60 мм. Для фиксации электродрели используется кольцо, установленное неподвижно на опору. Так создается передняя бабка. По швеллеру можно перемещать заднюю бабку.

Конструкция выполнена так, что охватывающий фрагмент профильной трубы имеет скользящую посадку по швеллеру.

Ходовые винты выточены из прутка Ø 14 мм. На них нарезана резьба М14.

Для установки резцов изготовлен резцедержатель. Он может устанавливаться в четырех положениях. При необходимости токарь в нем закрепит 4 разных резца.

Чтобы развернут нужный резец, высверлено центральное отверстие. Его ослабляют и поворачивают резцедержатель.

На станину устанавливается суппорт. Он тоже может скользить по направляющим станины. Ходовой винт продольной подачи определить положение относительно передней бабки.

Поперечную подачу резцедержателя обеспечит ходовой винт. Он установлен внутри суппорта.

Сверху ставят резцедержатель. Основные элементы для инструментов размещены по месту.

Станок почти готов. Чтобы он стоял неподвижно, на лапках станины имеются отверстия. Ими крепят станок к столу.

Проходным резцом можно проточить поверхность заготовки. Его медленно перемещают в сторону передней бабки.

Заменив резец, ведут поперечное точение. Теперь образуется поясок. Так, комбинируя резцы, можно вытачивать изделия разной формы. При необходимости деталь крепится в задней бабке. Для этого в коническом отверстии устанавливается конус.

Станок готов, он удобен для миниатюрной работы. Получив опыт работы на подобном оборудовании, можно задумываться о создании более солидного устройства.

Статичный люнет и его строение

Статичное устройство устанавливается на станину при помощи нижнего зацепления. Основной задачей неподвижного люнета является поддерживание габаритных деталей во время работы с ними. Таким образом, удается избежать ненужных вибраций и повысить точность обработки заготовок. Статичный прибор имеет несколько ключевых элементов строения:

Для рабочей фиксации крышки в конструкции устройства имеется откидной болт со специальной головкой. В основании и на крышке люнета располагается три кулачка для фиксации. Посредством их регулировки оператор станка может подгонять прибор под размер обрабатываемых деталей. Для этого в конструкции прибора предусмотрены специальные болты.

Что можно измерить штангенциркулем?

1) Внешний размер детали (предмета)

Например, с помощью губок для наружных измерений можно измерить наружный диаметр трубы:

2) Толщину детали (предмета)

Например, точно также с помощью губок для наружных измерений можно измерить толщину стенки трубы:

3) Внутренний размер детали (предмета)

Например, с помощью губок для внутренних измерений можно измерить внутренний диаметр трубы:

4) Глубину детали (предмета)

Штангенциркуль имеет специальный глубиномер, который позволяет измерить глубину детали:

Изготовление и устройство токарного станка по металлу своими руками

Сделать своими руками мини токарный станок по металлу не так уж сложно, как может показаться, на первый взгляд. Нужно просто составить подробный план действий, чертёж, подготовить необходимые материалы и инструменты, ну и, конечно, некоторые навыки, и большое желание.

Самодельный токарный мини-станок по металлу

Проектирование и чертежи токарного станка по металлу для гаража

Этот этап наиболее важен, так как от него зависит правильность выполнения всех дальнейших операций и корректная работа оборудования. В первую очередь необходимо определиться с габаритами станка. Средние размеры оборудования, используемого в быту, составляет 900×350×300 мм. Не стоит сильно отходить от этих значений, так как это приведёт к тому, что работать будет неудобно, и производительность значительно снизится.

Схема токарного станка

Определившись с чертежом и размерами маленького токарного станка, переходим к подготовке необходимых материалов.

Иллюстрация Описание действия

После того как выбран чертёж и подготовлены все необходимые материалы и узлы, можно приступать к сборке агрегата.

Выбираем электродвигатель для самодельного токарного станка

Электродвигатель – наиболее важный элемент токарного станка по металлу, будь то промышленного производства или самодельного. Именно он отвечает за работу оборудования. От мощности электродвигателя во многом зависит функциональность токарного станка. Если станок предназначается для работы с заготовками небольшого размера, то достаточно будет двигателя мощностью до 1 кВт (можно, например, взять от старой швейной или стиральной машинки). Для крупных деталей нужен будет силовой агрегат мощностью в пределах 1,5−2 кВт.

Электродвигатель – важнейший элемент, без которого токарный станок работать не будет

Порядок сборки токарного станка по металлу

Чтобы токарный станок нормально работал, важно правильно его собрать, а для этого нужно просто следовать следующему алгоритму:

Одна из самых простых моделей самодельного токарного станка, который можно быстро переделать в наждак и обратно

При желании обычное токарное оборудование можно переоснастить своими руками во фрезерный станок по металлу.

Читайте также:  Парта дерево своими руками

Делаем своими руками токарный станок из дрели

Сделать токарный станок можно и из электродрели, но в основном такая конструкция пригодна для обработки дерева. Конечно, он может использоваться для работы с металлом, но используемый силовой агрегат должен быть как можно мощнее, а детали очень маленькими. Например, такой станочек подойдёт для доморощенного ювелира-любителя. Такая конструкция состоит из минимума деталей. Итак, переходим к пошаговой инструкции по изготовлению токарного станка из дрели с фото и описанием.

Станина из чугуна может быть заменена рамой из стальных уголков и профильных труб. Не стоит использовать древесину, поскольку в этом случае не стоит надеяться на долговечность станка и точность выполняемых работ.
В качестве силового агрегата предпочтительно брать маломощный асинхронный электродвигатель, так как даже при резком снижении оборотов не сломается привод. Мощность двигателя нужно подбирать в соответствии с предполагаемыми диаметрами заготовок.
В качестве крепежа используем набор болтов и гаек различного диаметра и длины.
Салазки из стальных прутьев изготавливаем из стального прута, который рекомендуется подвергнуть закалке. Также можно использовать готовые элементы от подходящего по размерам б/у станка заводского производства (это касается и остальных узлов оборудования).
Шпиндель и «задняя бабка» считаются наиболее сложными узлами для самостоятельного изготовления, поэтому можно обратиться в специализированную мастерскую или к производителю. Если решено, всё же делать эти детали самостоятельно, то бабку можно сделать из металла соответствующей толщины и профильных труб. Простой шпиндель делают из болта с острозаточенным концом, гаек и штурвала.
Подающие продольные и поперечные винты можно выточить на станке в специализированной мастерской или самостоятельно сделать из прутов с уже нарезанной резьбой.
Для создания вращающихся узлов подойдут подшипники качения, монтируемые на корпус.
Резцедержатель делается сборным из толстой стальной пластины, заказывается в специализированной мастерской или же берётся от другого станка.
Иллюстрация Описание действия

Как сделать своими руками токарный станок, видеоролики расскажут более подробно:

Отрывок, характеризующий Нониус

– Да, есть ли семья без своего горя? – сказал Пьер, обращаясь к Наташе. – Вы знаете, что это было в тот самый день, как нас освободили. Я видел его. Какой был прелестный мальчик. Наташа смотрела на него, и в ответ на его слова только больше открылись и засветились ее глаза. – Что можно сказать или подумать в утешенье? – сказал Пьер. – Ничего. Зачем было умирать такому славному, полному жизни мальчику? – Да, в наше время трудно жить бы было без веры… – сказала княжна Марья. – Да, да. Вот это истинная правда, – поспешно перебил Пьер. – Отчего? – спросила Наташа, внимательно глядя в глаза Пьеру. – Как отчего? – сказала княжна Марья. – Одна мысль о том, что ждет там… Наташа, не дослушав княжны Марьи, опять вопросительно поглядела на Пьера. – И оттого, – продолжал Пьер, – что только тот человек, который верит в то, что есть бог, управляющий нами, может перенести такую потерю, как ее и… ваша, – сказал Пьер. Наташа раскрыла уже рот, желая сказать что то, но вдруг остановилась. Пьер поспешил отвернуться от нее и обратился опять к княжне Марье с вопросом о последних днях жизни своего друга. Смущение Пьера теперь почти исчезло; но вместе с тем он чувствовал, что исчезла вся его прежняя свобода. Он чувствовал, что над каждым его словом, действием теперь есть судья, суд, который дороже ему суда всех людей в мире. Он говорил теперь и вместе с своими словами соображал то впечатление, которое производили его слова на Наташу. Он не говорил нарочно того, что бы могло понравиться ей; но, что бы он ни говорил, он с ее точки зрения судил себя. Княжна Марья неохотно, как это всегда бывает, начала рассказывать про то положение, в котором она застала князя Андрея. Но вопросы Пьера, его оживленно беспокойный взгляд, его дрожащее от волнения лицо понемногу заставили ее вдаться в подробности, которые она боялась для самой себя возобновлять в воображенье. – Да, да, так, так… – говорил Пьер, нагнувшись вперед всем телом над княжной Марьей и жадно вслушиваясь в ее рассказ. – Да, да; так он успокоился? смягчился? Он так всеми силами души всегда искал одного; быть вполне хорошим, что он не мог бояться смерти. Недостатки, которые были в нем, – если они были, – происходили не от него. Так он смягчился? – говорил Пьер. – Какое счастье, что он свиделся с вами, – сказал он Наташе, вдруг обращаясь к ней и глядя на нее полными слез глазами. Лицо Наташи вздрогнуло. Она нахмурилась и на мгновенье опустила глаза. С минуту она колебалась: говорить или не говорить? – Да, это было счастье, – сказала она тихим грудным голосом, – для меня наверное это было счастье. – Она помолчала. – И он… он… он говорил, что он желал этого, в ту минуту, как я пришла к нему… – Голос Наташи оборвался. Она покраснела, сжала руки на коленах и вдруг, видимо сделав усилие над собой, подняла голову и быстро начала говорить: – Мы ничего не знали, когда ехали из Москвы. Я не смела спросить про него. И вдруг Соня сказала мне, что он с нами. Я ничего не думала, не могла представить себе, в каком он положении; мне только надо было видеть его, быть с ним, – говорила она, дрожа и задыхаясь. И, не давая перебивать себя, она рассказала то, чего она еще никогда, никому не рассказывала: все то, что она пережила в те три недели их путешествия и жизни в Ярославль. Пьер слушал ее с раскрытым ртом и не спуская с нее своих глаз, полных слезами. Слушая ее, он не думал ни о князе Андрее, ни о смерти, ни о том, что она рассказывала. Он слушал ее и только жалел ее за то страдание, которое она испытывала теперь, рассказывая.

Подвижный люнет и его строение

Данное устройство располагается на продольном суппорте станка. Благодаря такому расположению, мобильный люнет выполняет движения с той же траекторией, что и резец станка. Таким образом, уменьшается давление на деталь со стороны токарного резца. Подвижный тип прибора тоже имеет свою классификацию:

Мобильный люнет прикрепляют к каретке суппорта и используют в тех случаях, когда есть необходимость произвести чистую обточку или сделать резьбу на длинных заготовках. Как и неподвижный люнет, благодаря настраиваемым кулачкам, имеет возможность фиксировать совершенно разные по диаметру детали.

Максимальный диаметр обрабатываемой заготовки зависит от модели устройства и находится в диапазоне от 20 до 250 мм. Ключевые элементы конструкции подвижного люнета:

Перед началом работы на детали необходимо обточить зону, в которой она будет соприкасаться с фиксаторами люнета. Кулачки необходимо зажимать плавно и медленно для надежного и равномерного зажатия. При правильной фиксации заготовка будет оставаться неподвижной даже при очень серьезных нагрузках. После завершения работ кулачки постепенно отводятся или открывается крышка устройства.

Штангенциркуль Википедия

Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия)
, возможно, нарушая при этом правило о взвешенности изложения.

Вы можете помочь Википедии, добавив информацию для других стран и регионов. (Ноябрь 2017)

(от нем. Stangenzirkel) — универсальный измерительный прибор, предназначенный для высокоточных измерений наружных и внутренних линейных размеров, а также глубин отверстий.

Штангенциркуль — один из самых распространённых приборов измерения благодаря простой конструкции, удобству в обращении и быстроте в работе. Является подвидом штангениструмента, к которому относятся также штангенрейсмас, штангенглубиномер и другие.

Устройство

Штангенциркуль, как и другие штангенинструменты, имеет измерительную штангу (отсюда и название этой группы) с основной шкалой и нониус — вспомогательную шкалу для отсчёта долей делений. Точность его измерения — десятые или сотые (у разных видов) доли миллиметра. Точность шкалы с нониусом рассчитывается по формуле: цена деления основной шкалы разделить на количество штрихов нониуса.

На некоторых экземплярах штангенциркуля возможно также присутствие в верхней части подвижной рамки шкалы, измеряющей расстояние в дюймах. Нониус такого штангенциркуля даёт отсчёт в 1/128 дюйма.

Снятие показаний

По способу снятия показаний штангенциркули делятся на:

  • нониусные;
  • циферблатные — оснащены циферблатом для удобства и быстроты снятия показаний;
  • цифровые — с цифровой индикацией для безошибочного считывания.

Порядок отсчёта показаний штангенциркуля по шкалам штанги и нониуса:

  • считают число целых миллиметров, для этого находят на шкале штанги штрих, ближайший слева к нулевому штриху нониуса, и запоминают его числовое значение;
  • считают доли миллиметра, для этого на шкале нониуса находят штрих, ближайший к нулевому делению и совпадающий со штрихом шкалы штанги, и прибавляют его порядковый номер и цену деления нониуса (цена деления нониуса рассчитывается по формуле: цена деления основной шкалы разделить на количество штрихов нониуса), у наиболее распространенных штангенциркулей ШЦ-1 цена деления нониуса — 0,1 мм.
  • подсчитывают полную величину показания штангенциркуля, для этого складывают отсчёт по основной шкале (число целых миллиметров) и отсчёт по шкале нониуса (долей миллиметра).

Для чего он нужен?

На токарном станке обрабатываются детали разной длины, в т. ч. длинные заготовки небольшого диаметра. Они закрепляются в 2-х точках (торцы), и по мере удаления от места фиксации повышается вероятность продольной деформации при воздействии режущего инструмента.

В таких условиях очень трудно, а порой просто невозможно, обеспечить нужную точность обработки и идеальную цилиндричность.

Кроме того, вибрирующая заготовка повреждает рабочий инструмент и оснастку. При работе на больших скоростях возникает риск разрушение детали в центральной части, что чревато травмами для рабочего.

Люнет представляет собой дополнительную опору, которая повышает устойчивость обрабатываемой заготовки. Таким способом удается устранить деформацию и вибрацию детали.

Существенно повышается безопасность работ. Используется приспособление обычно в тех случаях, когда длина заготовки превышает ее диаметр в 10 и более раз.

Штангенциркуль — Википедия. Что такое Штангенциркуль

Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия)
, возможно, нарушая при этом правило о взвешенности изложения.

Вы можете помочь Википедии, добавив информацию для других стран и регионов. (Ноябрь 2017)

(от нем. Stangenzirkel) — универсальный инструмент, предназначенный для высокоточных измерений наружных и внутренних размеров, а также глубин отверстий.

Штангенциркуль — один из самых распространённых инструментов измерения благодаря простой конструкции, удобству в обращении и быстроте в работе.

Устройство

Штангенциркуль, как и другие штангенинструменты (штангенрейсмас, штангенглубиномер), имеет измерительную штангу (отсюда и название этой группы) с основной шкалой и нониус — вспомогательную шкалу для отсчёта долей делений. Точность его измерения — десятые/сотые (у разных видов) доли миллиметра. Точность шкалы с нониусом рассчитывается по формуле: цена деления основной шкалы разделить на количество штрихов нониуса.

На некоторых экземплярах штангенциркуля возможно также присутствие в верхней части подвижной рамки шкалы, измеряющей расстояние в дюймах. Нониус такого штангенциркуля дает отсчет в 128-х долях дюйма.

Снятие показаний

По способу снятия показаний штангенциркули делятся на:

  • нониусные,
  • циферблатные — оснащены циферблатом для удобства и быстроты снятия показаний,
  • цифровые — с цифровой индикацией для безошибочного считывания.

Порядок отсчёта показаний штангенциркуля по шкалам штанги и нониуса:

  • считают число целых миллиметров, для этого находят на шкале штанги штрих, ближайший слева к нулевому штриху нониуса, и запоминают его числовое значение;
  • считают доли миллиметра, для этого на шкале нониуса находят штрих, ближайший к нулевому делению и совпадающий со штрихом шкалы штанги, и плюсуют его порядковый номер и цену деления нониуса (цена деления нониуса рассчитывается по формуле: цена деления основной шкалы разделить на количество штрихов нониуса), у наиболее распространенных штангенциркулей шц-1 цена деления нониуса 0.1мм .
  • подсчитывают полную величину показания штангенциркуля, для этого складывают отсчет по основной шкале (число целых миллиметров) и отсчет по шкале нониуса (долей миллиметра).

Виды штангенциркулей

Штангенциркули по ГОСТ 166-89:

  • ШЦ-I
    — штангенциркуль с двусторонним расположением губок для измерения наружных и внутренних размеров и с линейкой для измерения глубин.
  • ШЦК
    — (штангенциркуль с круговой шкалой). В выемке штанги размещена рейка, с которой сцеплена шестерёнка головки, поэтому показания штангенциркуля, отвечающие положению губок, читают по шкале штанги и круговой шкале головки по положению стрелки. Это значительно проще, быстрее и менее утомительно для исполнителя, чем чтение отсчёта по нониусу;
  • ШЦТ-I
    — с односторонним расположением губок, оснащённых твёрдым сплавом для измерения наружных размеров и глубин в условиях повышенного абразивного изнашивания.
  • ШЦ-II
    — с двусторонним расположением губок для измерения наружных и внутренних размеров и для разметки. Для облегчения последней оснащён рамкой микрометрической подачи.
  • ШЦ-III
    — с односторонним расположением губок для измерения наружных и внутренних размеров.
  • ШЦЦ
    — с цифровой индикацией (электронный).

В условиях активной работы со штангенциркулем рекомендуется протирать его салфеткой, смоченной в водно-щелочном растворе, затем вытирать насухо, а по окончании работ — укладывать в чехол. Желательно не допускать при эксплуатации грубых ударов или падения инструмента во избежание изгибов штанги, а также царапин на измерительных поверхностях или их трения об измеряемую деталь.

Порядок поверки штангенциркулей определён ГОСТ 8.113-85.

Плюсы и минусы устройства

Правильно установленный люнет любого типа способен значительно повысить точность проводимых работ, целостность деталей, обезопасить и облегчить работу оператора. Устройство расширяет минимальные и максимальные параметры обрабатываемых заготовок, предоставляет дополнительные углы фиксации деталей. Прибор несложен в использовании и установке, надежен.

Мобильный люнет легче устанавливать, но неподвижный обеспечивает большую точность обработки. Перед началом работы особое внимание следует обратить на подгон кулачков и тщательно проверить фиксацию заготовки, что немного снижает интенсивность производства. Стоимость современных моделей данных приборов может несколько снизить область их применения.

Видео: люнеты для токарного станка.

Какие бывают люнеты, их устройство

Токарный люнет – это специальный механизм, который можно установить на станину станка. Он, по сути, является опорой, выполняющей основную или второстепенную функцию.

Приспособление применяют тогда, когда нужно избежать риска повреждения и деформации изделия или режущих элементов станка за счет придания заготовке дополнительной устойчивости, в отдельных случаях — для возможности обработки детали с торца. Устройства бывают подвижного типа и неподвижные.

Люнет неподвижной конструкции

Механизм этого типа предназначен создавать поддержку для габаритных длинных деталей во время обработки. Его крепят в область нижнего зацепления станка стационарно и неподвижно

. Результат использования – уменьшение биений и вибраций, повышение точности обработки. Неподвижный люнет состоит из:

В некоторых случаях первые два элемента могут выступать единой конструкцией.

Так как кулачки имеют непосредственный контакт с обрабатываемой поверхностью, в месте соприкосновения последняя может нарушаться. Во избежание этого на концах упоров есть бронзовые наконечники

. Сами же кулачки изготавливают из твердых сплавов, чтобы они выдерживали серьезные динамические нагрузки

. Выдвижные ролики оказывают меньшее влияние на заготовку в плане ее повреждения.

Люнет подвижной конструкции

Подвижный токарный люнет устанавливают на станке, на его продольном суппорте, и закрепляют к каретке. Вдоль этого суппорта его можно свободно перемещать аналогично тому, как перемещается токарный резец

. Приспособление может быть применено для разных диаметров изделий. Результат использования – токарный резец оказывает меньшее давление на поверхность, обработка проходит более равномерно, исключается риск разрушения режущего элемента.

Кроме системы крепления к станку, все остальные элементы люнета подвижной конструкции схожи с неподвижным приспособлением. Существует определенная классификация устройств подвижного типа для токарных станков:

РАСЧЕТ И ПОСТРОЕНИЕ ШКАЛЫ НОНИУСА

Принцип построения шкалы нониуса заключается в повышении точности отсчета, связанной с оценкой доли деления основной шкалы.
Точность отсчета по нониусу i

в мм определяется по формуле

– цена деления основной шкалы, мм;

– число делений шкалы нониуса.

Расстояние между соседними штрихами нониуса (цена деления шкалы нониуса) в мм определяется по формуле

– модуль, т.е. натуральное число 1, 2, 3, … служащее для увеличения длины деления шкалы нониуса с целью повышения удобства отсчета.

Длина шкалы нониуса в миллиметрах определяется по формуле

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1.4.1 Ознакомиться с конструкцией инструментов, методикой подготовки к измерениям и приемами отсчета показаний.

1.4.2 Провести измерения и вычертить эскиз детали с нанесением измеренных линейных размеров и углов.

1.4.3 По значениям i

,
γ
,
с
(таблица 1.1) индивидуально рассчитать и изобразить в относительном масштабе шкалу нониуса.

Таблица 1.1 Варианты значений для расчета и построения шкалы нониуса

Исходные данные Варианты
i 0,1 0,1 0,1 0,05 0,05 0,05 0,02 0,02 0,02 0,1 0,05 0,02
γ
С

1.4.4 Заполнить таблицу 1.2 с метрологическими характеристиками инструментов пользуясь таблицей приложения А.

Таблица 1.2 Метрологические характеристики инструментов

Инструмент Тип Основная шкала Шкала нониуса Предельная погрешность, мм (мин)
Цена деления, в мм, (град) Диапазон измерения, мм, (град) Точность отсчета, мм (мин) Модуль Цена деления, мм (мин)
Штангенциркуль
Штангенрейсмус
Штангенглубиномер
Угломер

1.4.5 Ответить на вопросы и сделать выводы.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1.5.1 Для каких измерений предназначены штангенинструменты?

1.5.2 Для чего предназначена нониусная шкала?

1.5.3 Как проверить пригодность инструментов к измерениям?

1.5.4 Что такое модуль и как она влияет на удобство отсчета показаний?

1.5.5 Чем отличаются транспортирный и универсальный угломер?

1.5.6 Как работать с винтом микроподачи и для чего она предназначена?

1.5.7 Как производить разметку необходимого размера на заготовке?

Лабораторная работа №2

ИЗМЕРЕНИЕ АВТОТРАКТОРНЫХ ДЕТАЛЕЙ МИКРОМЕТРИЧЕСКИМИ ИНСТРУМЕНТАМИ

Приобретение практических навыков в пользовании микрометрическими инструментами и освоение приемов измерения.

Микрометры гладкие типа МК; нутромеры микрометрические типа НМ; глубиномеры микрометрические типа НМ, автотракторные детали.

Микрометрические измерительные инструменты — это микрометры глад­кие для измерения наружных размеров, нутрометры для определения внутренних размеров, глубиномеры, специальные микрометры — листовые, трубные, зубомерные, с резьбовыми вставками и др. Микрометр, микрометрический нутромер и микрометрический глубиномер являются универсальными средствами измерений, которые предназначены для абсолютных измерений линейных размеров контактным методом. Мерительная плоскость пятки и измерительная ножка оснащены пластинками из твердого сплава. Измерительным устройством любого микрометрического инструмента является точно изготовленная микрометрическая головка с диапазоном измерения 0-25 мм, а у микрометрического нутромера 0-13 мм. В микрометрических головках винтовую пару используют как увеличивающее устройство, преобразующее небольшие продольные перемещения винта в большие окружные перемещения шкалы барабана. Цену деления шкалы барабана определяют по формуле

где р=0,5 – шаг винта, мм;

n=50 – число делений шкалы барабана.

i = p/n = 0,5/50 = 0,01 мм

Цену деления шкалы барабана называют точностью отсчета микрометра.

В мировой практике применяются также микрометры с отсчетом показаний на цифровом дисплее. Последнее достижение в области измерительного инструмента — это создание микрометров с мгновенной индикацией, цена деления микрометра 0,01 мм, диапазоны измерения 0. 25 и 25. 50 мм.

Последнее изменение этой страницы: 2017-01-26; Нарушение авторского права страницы

Из чего состоит токарный станок: основные узлы

В большинстве своём промышленные и бытовые токарные станки сходны. Разница заключается в функциональности, мощности и весе. На рисунке ниже представлено устройство типового токарно-винторезного станка. Основными узлами являются:

Устройство токарно-винторезного станка

Станина

Одним из главных элементов является станина – массивная металлическая основа, на которой смонтированы все главные узлы и детали оборудования. Она должна быть достаточно прочной, а масса таковой, чтобы не позволить станку опрокинуться в процессе работы. Для напольного варианта добавляются массивные опоры (тумбы).

Станина токарного станка

Суппорт токарного станка

Суппорт токарного станка предназначен для передвижения вдоль, поперёк и под углом к оси шпинделя резцов, закреплённых в резцедержателе. Устройство имеет крестовую конструкцию, состоящую из трёх основных элементов: каретка, поперечные и резцовые салазки.

Суппорт токарного станка по металлу для дома

Изготовление своими руками передней бабки токарного станка

Передняя бабка является одним из наиболее сложных узлов токарного станка, особенно для самостоятельного изготовления. В ней располагается редуктор со шпинделем и блоком управления. Под кожухом передней бабки находится электродвигатель, который соединён ременной передачей со шкивом редуктора.

Самодельная передняя бабка в сборе с патроном

В данном узле расположен блок, состоящий из сменных шестерён, предназначенных для передачи и изменения скорости вращения шпинделя и крутящего момента с вала коробки подач. Можно купить переднюю бабку токарного станка или сделать её самостоятельно.

Источник

Читайте также:  Костюм солнышко для взрослых своими руками
Оцените статью
Своими руками