Настройка ксв метра своими руками

Настройка ксв метра своими руками

Почти каждый пользователь радиостанции или трансивера сталкивается с необходимостью оптимального согласования антенно-фидерного устройства и передатчика. Эта проблема актуальна как для тех, кто пользуется «стационарными» радиостанциями (в том числе для радиообмена в гражданском диапазоне 27 МГц), так и для тех, кто использует автомобильные AM и ЧМ трансиверы. Для увеличения зоны действия портативной (носимой) радиостанции подключают соответствующую внешнюю антенну. Решение этой проблемы важно для тех, кто уже имеет или собирается приобрести и зарегистрировать радиостанцию, ведет активный и эффективный (на дальние расстояния) радиообмен. Для этого и необходим КСВ-метр.

КСВ-метр — это измеритель коэффициента стоячей волны. Автор в своей лаборатории имеет два промышленных измерителей КСВ -SWR-430 Optim (вариант SWR-121) и SX-40 (вариант SX-40). Об общих принципах настройки антенного хозяйства с помощью КСВ-метров хорошо описано в [1].

КСВ-метр SWR-430

КСВ-метр SWR-430, внешний вид которого показан на фото 1 внизу, измеряет КСВ в линиях питания (фидерных линиях) антенного хозяйства гражданского диапазона 27 МГц (диапазон частот измерений 24. 30 МГц) и является необходимым устройством для качественной настройки антенн.

Это, в свою очередь, обеспечивает качественную работу приемо-передающих устройств. Поскольку любая антенна настраивается «под передатчик», именно от резонанса антенного хозяйства и передающего тракта конкретной радиостанции зависит эффективность и дальность работы конкретного радиокорреспондента.

Прибор SWR-430 помимо КСВ может измерять выходную мощность передатчика радиостанции. Шкала стрелочного индикатора (фото 1 внизу) в устройстве только одна, функции измерения КСВ и мощности передатчика переключаются на передней панели полозковым переключателем.

Погрешность устройства не более 5%, импеданс 50 Ом. Устройство годится для измерения проходной мощности до 100 Вт, что вполне удовлетворяет запросам радиолюбителей, поскольку большинство современных трансиверов имеют

максимальную мощность до 100 Вт, кроме того, в России по требованиям Роскомнадзора работать с мощностью выше этого значения могут только специалисты.

Диапазон градуировки стрелочного индикатора 1. 1:3. Это прибор небольшой точности измерения, однако с его помощью можно настроить антенну простым способом, что, безусловно, лучше, чем полное отсутствие приборов настройки антенного хозяйства.

Замечу, что аналогичные по характеристикам устройства SWR-420 Optim и SWR-121 могут изменять только КСВ без возможности измерения мощности.

Измерители КСВ и мощности SX-20 и SX-40

Измеритель КСВ и мощности SX-40 (см. фото 1 вверху) представляет собой устройство с двумя функциями: позволяет измерить мощность и КСВ в диапазоне 140. 525 МГц.

На передней панели прибора установлен переключатель максимальной измеряемой мощности 15/150 Вт. Причем минимальная измеряемая мощность всего 1 Вт, что позволяет настраивать антенное хозяйство портативных радиостанций в режиме «LOW», не опасаясь выхода из строя выходного каскада при любом из возможных значений входного сопротивления антенны.

КСВ-метр модели SX-20 предназначен для измерения мощности и КСВ в диапазоне 1,8.. 200 МГц. Он имеет переключатель максимальной измеряемой мощности 30/300 Вт.

У обоих устройств волновое сопротивление (импеданс) 50 Ом (для подключения к кабелю с волновым сопротивлением 50 Ом), подключаемый с помощью разъема UHF. Минимальная мощность радиостанции 2 Вт.

Самодельный КСВ-метр

Те радиолюбители, кто редко ремонтирует и настраивает радиостанции, пользуются для настройки и согласования трансиверов и АФУ услугами «выездных специалистов», что сегодня обходится весьма дорого, как и любые работы в сфере обслуживания и ремонта. Хотя специалисты для настройки и согласования пользуются все теми же измерителями КСВ. Так не проще ли собрать его самому? Для тех, кто готов сам собрать измеритель КСВ и научиться пользоваться им, предлагаю следующие рекомендации.

Для согласования выхода передатчика с фидером используется специальное согласующее устройство, а антенна согласуется с кабелем, как правило, изменением длины антенны.

Принципиальная электрическая схема самодельного измерителя КСВ с согласующим устройством показана на рис.1.

Согласующее устройство состоит из двух конденсаторов переменной емкости С1 и С2 с воздушным диэлектриком (например, КПЕ-4. 50, 1КЛМВ-1) и бескаркасной катушки индуктивности L1. Она содержит 8 витков медного провода без изоляции диаметром 2,2 мм с диаметром намотки 25 мм и длиной 22 мм. Индуктивность такой катушки составит 1,2 мкГн. Настройка согласования производится конденсаторами С1 и С2. Показания считывают по шкале миллиамперметра ИП. КСВ-метр при настройке устанавливается между согласующим устройством и фидерной линией.

Измеритель КСВ показывает, насколько близко к режиму бегущей волны (отсутствие отраженного сигнала от нагрузки) находится система «радиостанция-фидер-антенна».

Согласующее устройство измерителя подключают к гнезду антенны передатчика с помощью отрезка кабеля (длиной не более 1 м) с волновым сопротивлением 50 Ом, например, РК-50 или аналогичного.

Измерительная часть КСВ-метра конструктивно выполнена из отрезка того же кабеля длиной 160 мм с удаленной внешней изоляцией. Этот отрезок кабеля после всех подготовительных работ загибают подковой. Экран провода соединяют с «общим проводом» передатчика. Конструкция и внешний вид окончательно оформленного отрезка кабеля показан на рис.2.

Внутреннюю жилу кабеля (2) подсоединяют соответственно одним концом к согласующему устройству (конденсатор С2), а другим — к фидеру антенны. Внутри экранирующего провода КСВ-метра (отрезка кабеля длиной 160 мм с удаленной изоляцией — 1) аккуратно с помощью иголки прокладывают гибкий изолированный провод типа МГТФ-0,8 (3) и от его середины выводят отвод для подключения резистора R1. Концы внутреннего провода МГТФ-0,8 (может быть применен любой аналогичный провод МГТФ-1, МГТФ-2) припаивают к германиевым диодам VD1, VD2.

Резистор R1 мощностью 2 Вт с сопротивлением в пределах 30. 150 Ом. Переменный резистор R2 типа СПО-1. В качестве диодов VD1, VD2 используются «старые» германиевые диоды из серий Д2, Д9, Д220, Д311 с любым буквенным индексом.

Читайте также:  Ловушки для тетеревов своими руками

Измерительный прибор любой градуированный, стоком полного отклонения 1 мА. Переключатель SB1 типа тумблер, например MTS-1. Корпус для устройства измерителя КСВ может быть выбран любым подходящим, экранированным.

Внешний вид готового устройства может быть таким (например, как в авторском варианте), как показано на фото 2.

Перед включением радиостанции и согласующего устройства проводят необходимые подготовительные работы: подключают антенно-фидерное устройство, устанавливают переключатель SB1 в положение «ПР» (в левое по схеме положение), а движок переменного резистора R2 устанавливают в среднее положение.

После подачи питания на радиостанцию и включения ее в режим «передача», перемещением движка переменного резистора R2 добиваются максимального отклонения стрелки миллиамперметра вправо, к примеру, до цифры «10» (если эта цифра является максимальной градуированной величиной на шкале). После этого переводят переключатель SB1 в положение «ОБР» и фиксируют новое показание по шкале прибора (заметно меньше предыдущего), что соответствует значению обратной волны.

По формуле КСВ=(Ппр +Побр )/(Ппр -Побр)) находят значение КСВ, где Ппр -показание прибора в режиме фиксации прямой волны (переключатель SB1 в левом по схеме положении).

Побр — показание прибора при обратной волне.

Например, Ппр =10, Побр=2, тогда КСВ =(10+2)/( 10-2)= 12/8=1,5.

Потери на отражение волны в цепи «передатчик-фидер-антенна» зависят от величины КСВ и приведены в таблице.

Для оптимального согласования желательно иметь КСВ в пределах 1,1. 1,5, в этом случае потери на отражение волны составят 5. 12%, что вполне допустимо.

Перед началом настройки антенны желательно убедиться в правильности показаний имеющегося КСВ-метра и иметь «контрольную» антенну, которой может быть штатная антенна от переносной радиостанции или даже самодельный четвертьволновый (1/4) «штырь».

В своих запасах хорошо иметь два КСВ-метра, рассчитанных для работы с фидерами, имеющими волновое сопротивление и 50 и 75 Ом, и, конечно, несколько «образцов» используемых кабелей.

Сравнительные измерения (сравнительная эффективность) сводятся к определению уровня напряженности поля создаваемого настраиваемой антенной относительно контрольной.

Еще более точную оценку эффективности работы антенны можно получить, используя стандартный калиброванный измеритель напряженности поля, и тогда снять диаграмму направленности антенны, но такие возможности имеются не у всех радиолюбителей.

Согласование антенного хозяйства с помощью рассмотренного самодельного прибора сводится к тому, что при условии постоянной длины штыря антенны, изменением емкости конденсаторов С1 и С2 согласующего устройства, а также изменением емкости подстроечного конденсатора в основании антенны добиваются необходимых значений КСВ.

Если штырь антенны, а в некоторых моделях и его «противовес», конструктивно имеют возможность регулировки длины, то это является дополнительной возможностью настройки всей системы согласования.

Таким простым методом можно воспользоваться для настройки радиолюбительских УКВ-трансиверов и даже автомобильных радиостанций, работающих в гражданском диапазоне частот, с выходной мощностью 0,5. 15 Вт и укомплектованных простыми конструкциями антенн.

Источник

Настройка ксв метра своими руками

При разработке КСВ-метра (SWR-meter), предназначенного для работы внутри коротковолнового PA с большой выходной мощностью, наиболее сложными являются следующие две проблемы:

равномерности и корректности показаний в очень широком диапазоне частот (1,8. 30 MHz) и мощностей, т.е. в создании измерительного устройства, а не измерителя скорости ветра;

обеспечении нечувствительности к мощным электрическим и магнитным полям, которых предостаточно внутри усилителя мощности.

Первое условие исключает приборы, изготовленные на основе направленных разветвителей в виде провода, под оплеткой выходного коаксиального кабеля, или печатных полосок-проводников.

Чувствительность подобных устройств пропорциональна частоте, поэтому если на высокочастотных диапазонах для нормальной работы такому КСВ-метру достаточно нескольких ватт, то при работе на диапазоне 1,8 MHz мощность в сотни ватт (даже если используются германиевые (Ge) диоды) едва отклоняет стрелку.

О линейности детектирования и точности измерений при таких условиях говорить просто смешно. Поэтому в дальнейшем будет идти речь о измерителях КСВ с датчиком тока на ферритовом кольце, которые при рациональном монтаже почти не зависят от частоты. Кстати, именно на основе таких датчиков изготавливается большинство профессиональных приборов.

Обеспечить нечувствительность КСВ-метра к мощным электрическим и магнитным полям важно прежде всего для точного измерения малых значений КСВ.

В самом деле, при КСВ=1 на выходе датчика отраженной волны должен быть ноль, в случае же наводок на этот датчик появляется ошибка измерения, тем большая, чем меньшую величину КСВ мы измеряем. При малых значениях КСВ полезный сигнал на диоде детектора отраженной волны составляет десятки милливольт. Для корректной работы прибора паразитный сигнал наводки должен быть хотя бы на порядок меньше — несколько mV. А места в усилителе мало, рядом — анод лампы где более более одного kV, а в магнитном поле катушки П-контура «гуляет» реактивная мощность в Q раз больше выходной, т.е. несколько kWt.

Вот почему среди радиолюбителей бытует мнение, что самодельный точный измеритель КСВ можно изготовить только в виде отдельной от PA экранированной конструкции.

С другой стороны, в большинстве «фирменных» PA имеется встроенный (и при этом достаточно точный) измеритель КСВ, следовательно, при грамотном подходе изготовить его вполне возможно.

В радиолюбительской практике КСВ-метры с датчиком тока на ферритовом кольце достаточно распространены [1. 4]. При всем разнообразии, их схемы сводится к двум основным вариантам. Первый [1, 2] несколько упрощенно показан на рисунке 1.

На резисторах R1, R2 с обмотки трансформатора тока T1 выделяется напряжение, пропорциональное току в кабеле, которое подается на аноды детекторных диодов VD1, VD2. На катоды диодов подается напряжение с емкостных делителей C1, C2 и C3, C4 соответственно.

Читайте также:  Оформить бутылку атласными лентами своими руками

При КСВ=1 эти напряжения равны по амплитуде, на диоде падающей волны они складываются в фазе, а на диоде отраженной они имеют фазовый сдвиг 180 градусов и взаимно компенсируются, обеспечивая нулевое значение на выходе сигнала отраженной волны Uотр.

Деталей в схеме много (так, в [2] для их размещения потребовалась плата с размерами 95х80 мм), так что есть чему «ловить» наводки. При размещении такого прибора в PA, сбалансировать прибор (т.е. добиться величины Uотр=0 при КСВ=1) зачастую не удается даже при очень хорошем экранировании.

Не улучшают схему и два дросселя (их наличие необходимо, чтобы не замкнуть по высокой частоте сигналы с емкостных делителей C1, C2 и C3, C4), которые должны иметь высокий импеданс при отсутствии резонансов в рабочем диапазоне.

Это не так просто, как может показаться. Большинство промышленных дросселей этим условиям не удовлетворяют. Кроме того, дроссель любого типа является антенной, улавливающей магнитное поле, которое в PA создает катушка П-контура. Если же на рисунке 1 дроссели заменить резисторами, они сильно уменьшают выходные сигналы и, соответственно, чувствительность прибора.

Дополнительным конструктивным неудобством является подключение к линии двух конденсаторов (С1 и С3).

Чтобы исключить дроссель и второй емкостной делитель, используется схема, приведенная на рисунке 2 [3, 4].

Здесь применен симметричный трансформатор тока и только один емкостной делитель С1, С2.

К сожалению, использованный тип простейших детекторов требует протекания через источник сигнала постоянной составляющей тока детектора. Поэтому приходится устанавливать резистор R2 или высокочастотный дроссель, который обеспечивает соединение анодов диодов с общим проводом по постоянному току.

Но дроссель (как уже упомянуто) неплохая антенна для наводок, и нам не подходит. Наличие же резистора, во-первых, уменьшает выходные сигналы прибора, а во-вторых, приводит к частотной погрешности прибора.

Остановимся на этом подробнее. Баланс прибора на всех частотах достигается, когда напряжение от трансформатора тока в точности равно напряжению с делителя С1, С2. При условии качественного изготовления Т1, сигнал, пропорциональный току в кабеле, от частоты практически не зависит. Если бы у делителя напряжения не было R2, сигналы, пропорциональные напряжению, тоже не зависели бы от частоты.

Однако наличие R2 делает делитель С1, С2, R2 зависимым от частоты (хотя и в небольшой степени, из-за большого сопротивления R2). Поэтому точный баланс прибора, изготовленного по схеме рисунка 2 возможен на одном-двух смежных диапазонах. На других частотах при измерении малых значений КСВ будет возникать погрешность.

Решает эту проблему прибор, схема которого показана на рисунке 3.

Она отличается от схемы рисунка 2 только тем, что использованы детекторы с удвоением напряжения. Собственно, удвоение в данном случае не требуется, но то обстоятельство, что такие детекторы не требуют замыкания источника сигнала по постоянному току на корпус, в данном случае оказывается решающим. Из-за него удается исключить резистор в емкостном делителе (R2 на рисунке 2) и все связанные с ним проблемы.

Частотный диапазон и погрешность прибора, изготовленного по по схеме рис.3, определяются только качеством изготовления трансформатора T1 и рациональностью конструкции. Которой мы сейчас и займемся.

Конструкция

Традиционное исполнение в виде отдельного трансформатора тока и отдельной платы с деталями совершенно непригодно для работы внутри PA — наводок избежать не удастся. Проверено. Тем не менее, отказавшись от традиционной конструкции, вполне реально получить очень хорошо защищенный от наводок прибор.

Ниже описано конструктивное исполнение прибора по схеме рисунке 3, которое позволяет обойтись без дополнительного экранирования даже при работе в непосредственной близости от П-контура. Почти весь монтаж выполнен непосредственно на коаксиальном кабеле, идущем от выходного конденсатора П-контура к выходному разъему. Эскиз конструкции показан на рисунке 4.

Трансформатор тока T1 намотан на кольце M20BЧ K20х10х5 в два провода и содержит 2х10 витков провода МГТФ 0,25. Обмотка распределяется равномерно на 3/4 периметра кольца. Потребуется изготовить две одинаковые круглые шайбы из двустороннего фольгированного стеклотекстолита толщиной 1. 1,5 мм. Внутренний диаметр шайб должен быть равен диаметру коаксиального кабеля, идущего к выходному разъему PA, внешний — на 7. 10 мм больше диаметра кольца T1.

Технология изготовления

Берется отрезок коаксиального кабеля (лучше фторопластового, полиэтиленовый «поплывет» при неаккуратной пайке), которым будет соединяться выходной конденсатор П-контура с выходным разъемом.

В 4. 5 см от конца кабеля на длине около 20 мм аккуратно снимается внешняя изоляция. Посередине оголенного участка оплетки делается кольцевой разрез шириной 2. 3 мм. Разрезанные концы оплетки лучше опаять — для фиксации и предохранения их от замыкания между собой (важно, иначе трансформатор тока не будет работать — образуется короткозамкнутый виток).

Затем на один из разрезанных и опаянных кусков оплетки одевается (отступив от разреза оплетки на 6. 8 мм) и припаивается с обеих сторон к оплетке первая стеклотекстолитовая шайба.

Потом точно на середину разреза одевается ферритовое кольцо T1. Для его надежной фиксации место разреза обматывается несколькими слоями пластиковой ленты (на рисунке 4 условно не показана), так, чтобы кольцо T1 своим внутренним отверстием плотно оделось на эту ленту.

В уже припаянной стеклотекстолитовой шайбе по месту, напротив выводов T1, сверлится отверстие диаметром 1,2. 1,5 мм, через которое пропускаются наружу начала обмоток T1. Такое же отверстие сверлится и во второй шайбе. Затем вторая шайба одевается на кабель, концы обмоток T1 пропускаются через отверстие в ней наружу, после чего шайба паяется с обеих сторон аналогично первой. Расстояние между шайбами должно быть на 10. 12 мм больше толщины ферритового кольца, с тем чтобы вторую шайбу можно было паять изнутри (потребуется паяльник с плоским и узким жалом).

Читайте также:  Медные фигурки своими руками

Из тонкой жести или латуни вырезается полоска шириной, равной расстоянию между внутренними поверхностями шайб, и длиной, равной периметру шайб. Эта полоска-перемычка паяется по периметру между внутренними поверхностями шайб, образуя замкнутый кольцевой экран.

На этот экран снаружи припаивается конденсатор C1. В качестве C1 лучше использовать опорный конденсатор с отпиленным болтом крепления. В крайнем случае, можно использовать изолированную монтажную стойку с металлическим основанием, параллельно которой припаивают обычный конденсатор типа КМ и т. п., или даже припаять конденсатор без вывода (прямо тем торцом к которому был припаян вывод) к полоске. В любом случае надо позаботится о предельно коротких выводах.

Начало одной обмотки Т1 и конец другой припаиваются к верхнему выводу С1, образуя средний вывод Т1.

Теперь на обеих стеклотекстолитовых шайбах, на их внешних сторонах, резаком вырезаются по три контактные площадки, как показано на рис.5.

Оставшиеся свободными выводы T1 припаиваются к ближайшей контактной площадке на первой и второй шайбах соответственно. Между этими площадками устанавливается резистор R1, как показано на рис.4.

Оставшиеся детали паяют навесным монтажом (выводы укорачивают до минимальной длины) на контактных площадках обеих шайб, как показано на рис.5.

В качестве С3. С6 использованы малогабаритные конденсаторы типа КМ. При возможности лучше использовать безвыводные конденсаторы, или те же КМ с предварительно отпаянными выводами.

Выходные сигналы прибора парой проводов (уже без экрана, тут только постоянный ток, наводки не страшны) подаются на любое индикаторное устройство.

Теперь коаксиальный кабель с практически полностью смонтированным на нем КСВ-метром (пока отсутствует только С2) устанавливается в требуемом месте PA ( либо вблизи выходного конденсатора П-контура, либо вблизи выходного разъема PA), и навесным монтажом устанавливается подстроечный конденсатор С2, который должен иметь воздушный зазор, выдерживающий выходные напряжения PA. Можно использовать любой воздушный конденсатор предварительно продернув его пластины (для ротора совершенно достаточно одной пластины, размером с полкруга диаметром мм 10), можно и что-то самодельное придумать.

Место установки трансформатора тока (который теперь уже почти законченный прибор) надо выбрать так, чтобы С2 имел бы выводы минимальной длины. У меня С2 установлен изолированном кронштейне около выходного конденсатора П-контура.

Настройка

Подключив к PA эквивалент нагрузки, подстройкой С2 (диэлектрической отверткой, рука и металлические отвертки сильно влияют, и поэтому не годятся) добиваются нулевого значения Uотр.

Если минимум Uoтp достигается при минимальной емкости С2, надо увеличить емкость C1 (устанавливая параллельно дополнительные конденсаторы); если же минимум Uoтp получается при максимальной емкости C2, то емкость C1 надо уменьшать. Необходимо добиться, чтобы нулевые значения Uотр достигались при введенных на 1/4. 1/3 пластинах C2.

При изготовлении прибора необходимо учитывать следующие особенности:

резистор R1 должен быть мощным; так при выходной мощности усилителя 300 Wt мощность R1 должна составлять не менее 1 Wt. При больших мощностях имеет смысл набирать R1 из нескольких параллельно включенных резисторов, расположив их по окружности шайб и соответственно увеличив ширину контактных площадок для припаивания R1;

не следует применять первые попавшиеся под руку диоды в качестве VD1. VD4. При проходящей мощности в кабеле 5. 10 Wt (прибор уверенно работает и с такими мощностями) необходимо использовать германиевые (Ge) диоды. Если же мощность в кабеле составляет несколько сотен ватт, то обратное напряжение на диодах может достигать 20. 30 В, поэтому надо использовать кремниевые диоды с максимальным Uoбp. Из распространенных это КД522Б, КД510А. Выходное напряжение прибора при такой мощности составляет 10. 15 В, что позволяет, с одной стороны, использовать практически любые индикаторные устройства, с другой — простейшим образом организовать защитную автоматику при высоком уровне отраженной волны. Для этого достаточно через подстроечный резистор («Порог защиты») подать сигнал с выхода Uотр на вход логической микросхемы, выходной уровень которой использовать либо для индикации перегрузки, либо для аварийного отключения.

Неоднородности вносимые в кабель минимальны. Емкость C2 в настроенном состоянии составляет 2. 3 pF, других подключений к центральной жиле кабеля нет. Ток в оплетке протекает по следующей цепи: оплетка кабеля — внутренняя металлизация первой шайбы — кольцевая перемычка — внутренняя металлизация второй шайбы — оплетка кабеля. Физические размеры прибора составляют менее 0.002 длины волны верхнего рабочего диапазона, поэтому он практически не вноситнеоднородностей в измерительную линию.

Результаты

Показания прибора не зависят от частоты в диапазоне 1,8. 30 MHz. Балансировка сохраняется неизменной во всем рабочем диапазоне частот. Конструкция прибора позволяет без дополнительного экранирования устранить влияние наводок. Например, в PA с выходной мощностью более 500 Wt прибор располагается в нескольких сантиметрах от катушки П-контура и, тем не менее, не отмечалось влияния наводок на балансировку прибора.

Литература

1. Рэд Э. Справочное пособие по ВЧ схемотехнике. — М.: Мир, 1990. С.131.

2. КСВ метр-ваттметр. — Радиолюбитель. KB и УКВ, 1996, №4, C.32-33.

3. КСВ метр-ваттметр. — Радиолюбитель. KB и УКВ. 1996, №11,C.32-33.

4. Ефремов В. Универсальный измеритель КСВ. — Радиолюбитель. 1994, N1, С.58-59.,

Автор: Гончаренко Игорь (DL2KQ и EU1TT)

Вас может заинтересовать:

Комментарии к статьям на сайте временно отключены по причине огромного количества спама.

При перепечатке материалов ссылка на первоисточник обязательна.

Источник

Оцените статью
Своими руками