- Расчёт генератора, основные параметры и изготовление
- Активная длинна проводника
- Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора
- Ниже схема соединения однофазного генератора
- Соединение катушек
- Соединение катушек трехфазного генератора
- Соединение катушек
- Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником
- Таблица сопротивления медного провода
- Предварительный шаблон генератора
- Рисунок генератора
- Размеры катушки
- Ветрогенератор своими руками: расчет винта и генератора переменного тока
- Расчет рабочего винта (ветроколеса)
- Расчет генератора
Расчёт генератора, основные параметры и изготовление
Для расчёта напряжения генератора воспользуемся простой формулой, она очень простая и не должна вызвать проблем. Подробнее с примером можно почитать здесь — Расчёт ЭДС генератора. Про фазы и соединения катушек будет ниже, а пока разберемся с напряжением генератора.
Формула E=B·V·L где: Е-напряжение генератора (V). B-магнитная индукция магнитов(Тл). V-скорость движения магнитов (м/с). L-активная длина проводника (м).
С буквой Е — это напряжение генератора, которое нам нужно вычислить, а далее буква В — которая не известна, так-как мы не знаем какая магнитная индукция магнитов. Но если помучить поисковик и почитать форумы, то можно узнать что магнитная индукция неодимовых магнитов около 1,25Тл, конечно она разная для разных марок магнитов, но это среднее значение. Так-же известно что чем дальше от магнита — тем меньше и магнитная индукция. В общем если в случае изготовления дискового генератора расстояние между магнитами на противоположных дисках будет равно толщине магнитов, то магнитная индукция будет примерно 1.0Тл, если расстояние больше, то естественно магнитное поле будет слабее. Если к примеру у вас магниты толщиной 10мм, и вы делаете расстояние между магнитами 10мм, то индукция будет где то 1.0Тл, а статор в этом случае получится не более 8мм толщиной, и по 1мм на зазоры. Если расстояние будет скажем 12-14мм, то магнитная индукция упадет до 0.8-0.7Тл и ниже.
Для генераторов с железом принцип такой-же, но толщина магнитов может быть разная, некоторые ставят магниты толщиной 10-15мм, хотя для магнитной индукции в 1.0Тл достаточно толщины магнитов 3-4мм. Ещё важна толщина — магнито-пропускаемость статора, на зубы которого наматываются катушки. Если переборщить с толщиной магнитов то статор не сможет замкнуть всё магнитное поле и оно выйдет наружу, и к статору снаружи будет магнитися железо. То-есть это потери магнитного поля и нет смысла использовать слишком мощные магниты так-как часть магнитного поля не будет использоваться. Все конечно зависит от конкретных условий, но если не известна магнитная индукция, то лучше её брать как 0.8-1Тл.
Вернемся к формуле, V — это скорость движения магнитов, рассчитать её очень просто. К примеру если диаметр ротора с магнитами у нас 20см, то 20*3.14=62.8см. То-есть получается что за один оборот магниты проходят расстояние 62.8см или 0.62метра. Если диаметр ротора 8см, то аналогично 8*3.14=25.12см или 0.25м.
L — это активная длина проводника, то-есть это та длинна медного провода, которая попадает под магниты, ведь именно только тот участок провода вырабатывает электричество, который попадает под магнитное поле магнитов. Для дисковых аксиальных генераторов длинна активного проводника равна длинне магнитов. К примеру если у вас круглые магниты размером 30*10мм, то L=30мм, ну а если прямоугольные размером 50*30*10мм, то L=50мм. Для генераторов с железным статором активная длинна проводника равна ширине статора.
Активная длинна проводника
Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора
Ниже схема соединения однофазного генератора
Соединение катушек
Соединение катушек трехфазного генератора
Соединение катушек
Вернёмся к формуле E=B·V·L. К примеру планируется намотать 18 катушек проводом 1.0 мм, и в катушку помещается по 80 витков, значит всего у нас витков 18*80=1440 витков. Если генератор однофазный то так и считаем по всем катушкам, а если трёхфазный то будем брать катушки одной фазы, в данном случае шесть катушек в фазе, а потом вычислим данные при соединении звездой или треугольником. Я буду считать трёхфазный, по этому беру шесть катушек 80*6=480витков.
Магниты у нас к примеру 30*10мм (по 12шт на диске), значит активная длинна проводника 0.03м, если статор железный, то берётся ширина статора. Диски с магнитами у нас к примеру диаметром 20см, но надо брать диаметр по центру магнитов, значит минус 1,5см по кругу и того 20-3см=17*3.14=53.38см или 0.53м. Хочу напомнить что толщина железных дисков должна быть не менее толщины магнитов, иначе магнитное поле выйдет за железо и не будет участвовать в выработке электричества и магнитная индукция будет ниже, а если у вас к примеру ротор асинхронного двигателя, то после проточки желательно одеть металлическую гильзу и на неё клеить магниты, или вытачивать цельно-металлический ротор, так магниты будут использоваться эффективнее и можно или получить больше мощности или сэкономить на толщине магнитов.
И так теперь у нас есть необходимые данные для расчёта напряжения генератора к примеру при 60об/м. Магнитную индукцию возьмём равной 1Тл. Скорость движения магнитов у нас за оборот 0.53м, значит при 60об/м будет 1об/с, то-есть 0.53м/с — скорость движения магнитов. Активная длинна проводника нам тоже известна и равна 0.03м. Тогда 0.03м нужно умножить на количество витков в катушке (80) и на количество катушек (6), и получится 0.03*480=14.4м.
Теперь представляем значения в формулу E=B(1Тл)*V(0.53м)*L(14.4м), получается E=7.632V. В общем при 60об/м получается напряжение фазы 7.6 вольт. Напряжение генератора растёт линейно в зависимости от оборотов, значит при 120об/м будет 15.2 вольта, а при 240об/м будет 30.4 вольт. А при 300об/м будет 38.0 вольт. Зарядка начнётся при 120об/м если соединить фазы генератора треугольником. При соединении звездой напряжение генератора будет выше в 1,7 раза, значит зарядка начнётся ещё раньше, при 90об/м.
Но если нарисовать виртуальный статор с катушками и магнитами, то можно увидеть что магнит не перекрывает собой полностью катушку и 30% активной зоны не перекрывается как бы не стоял магнит, а это значит что 30% не участвует в выработке напряжения и это надо учитывать. Часто получается так что магнит перекрывает только половину катушки, и это значит что только половина витков участвует в выработке электричества. Значит в нашем случае напряжение будет ниже на 30% чем получилось, то-есть не E=7.632V, а E=5V.
Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником
Чем меньше сопротивление — тем выше сила тока зарядки и меньше потерь на нагрев, по-этому сопротивление обмотки генератора нужно делать как можно меньше. В нашем генераторе состоящем из 18 катушек всего 18*80=1440 витков, это по 480 витков в фазе. Чтобы узнать сопротивление фазы нужно узнать длинну провода в фазе и его сечение. Длина одного витка в среднем примерно 0.08м, значит 0.08*480=38.4м. Сопротивление одного метра медного провода сечением 1мм равно 0.0224Ом. Далее 38.4*0.0224=0.86Ом.
Таблица сопротивления медного провода
Чтобы узнать какой будет ток зарядки аккумулятора нужно знать напряжение генератора и его сопротивление, что мы уже знаем. Чтобы вычислить нужно от напряжения холостого хода генератора отнять напряжение генератора, и полученную сумму разделить на сопротивление, и получится ток зарядки. К примеру у нас при соединении звездой при 120об/м напряжение в холостую равно 10V*1.7=17 вольт. Тогда от 17 вольт отнимем напряжение аккумулятора 17-13 вольт и получим разницу в 4 вольта, разделим на сопротивление 1,46Ом, и получим 4:1.46=2.7Ампер. И так можно вычислить силу тока на каждых оборотах генератора, а чтобы получить мощность зарядки нужно амперы умножить на вольты, в данном случае 2.7*13=35.1 ватт*ч. А уже при 240об/м напряжение в холостую будет в два раза больше, так-как растёт линейно, тогда уже 20V-13=7:1.46=4.7 Ампер.
Но здесь играет роль не только сопротивление самого генератора, но и сопротивление провода от генератора до аккумулятора, сопротивление диодного моста, на котором падает до 1вольт напряжения, и сопротивление самого аккумулятора. Все это высчитать можно, но довольно сложно. Так-же изменяется сопротивление генератора во время работы, по-этому сумма общих потерь может составлять до 50% от мощности, и в итоге ток зарядки может оказаться в два раза меньше расчетного. И так-как это трудно все учесть на потери в среднем можно скинуть 30%, значит реально а аккумулятор пойдёт ток не 4.7Ампер при 240об/м, а значительно ниже, около 3.5-4 Ампера.
Такой расчёт дает примерное представление о будущем генераторе, но все-же это лучше чем делать как получится ничего не считая, и потом удивляться тому что или напряжение слишком низкое или высокое, или сопротивление слишком большое и смешной ток зарядки. Просчитав свои генераторы я убедился в справедливости такого расчёта генератора.
При расчете генератора нужно учитывать что его будет крутить ветроколесо ветрогенератора, и у ветроколеса есть свои обороты, и генератор нужно хоть примерно делать под будущий винт. Если это будет вертикальный ветряк, то его ветроколесо вращается очень медленно по сравнению с горизонтальным винтом. И в связи с этим нужно чтобы зарядка начиналась на очень низких оборотах генератора. Чтобы зарядка начиналась рано нужно чтобы напряжение было выше напряжения аккумулятора, отсюда нужно в катушках иметь как можно больше витков. Но чем больше витков тем длиннее провод, а значит и сопротивление, а сопротивление определяет силу тока зарядки. В итоге чтобы генератор был мощный и рано начиналась зарядка, нужно его рассчитать так чтобы и мощность была, и ветроколесо не перегрузить — иначе оно не выйдет на свои обороты и не наберет мощности.
С горизонтальным винтом генератор нужен не такой большой и материалоемкий как для вертикального, у горизонтальных винтов обороты в среднем в 5 раз выше, от этого и генератор нужен в пять раз меньше и во столько же раз дешевле. Расчёты витроколёс есть в даругих статьях из раздела «Расчёты ветряков». Советую вам и с этим материалом ознакомится, так-как ветрогенератор это единый механизм и его узлы должны быть подходящими по параметрам друг для друга, иначе или винт слишком мощный и малооборотистый или генератор слишком мощный, и толку от такого ветряка будет мало.
Предварительный шаблон генератора
Рисунок генератора
Размеры катушки
Чтобы подогнать генератор под ветроколесо или наоборот потом ветроколесо под генератор нужно высчитать мощность генератора на разных оборотах, к примеру при 120об/м когда начнётся зарядка аккумулятора, и начнётся нагрузка на ветроколесо, и далее при 180,240,300,360,420,480,540,600об/м.
Исходя из выше рассчитанных данных мы получили 17вольт при 120об/м, сопротивление у нас 1.46Ом. более точные данные будут если мерить напряжение во время зарядки в реальном времени, но я для малого тока взял напряжение аккумулятора равным 13 вольт, а далее исходил из напряжения 14 вольт. В итоге ниже получились вот такие расчёты, но на более высоких оборотах при большой разнице холостого напряжения и напряжения при заряде аккумулятора КПД генератора будет падать и ток зарядки опять-же не будет таким большим, хотя генератор будет грузить винт на большую мощность, потери будут на нагреве катушек и в проводах. В общем ток зарядки будет ниже ещё на 10-20%.
при 120об/м — 17-13=4:1.46=2.7А*13=35ватт
при 180об/м — 25.5-14=11.5:1.46=7.8А*14=110ватт
при 240об/м — 34-14=20:1.46=13.6А*14=190ватт
при 300об/м — 42.5-14=28.5:1.46=19.5А*14=273ватт
при 360об/м — 51-14=37:1.46=25.3А*14=354ватт
при 420об/м — 59-14=45:1.46=31А*14=436ватт
при 480об/м — 68-14=54:1.46=36.9А*14=516ватт
при 600об/м — 85-14=71:1.46=48.6А*14=680ватт
Но ветроколесо желательно при расчёте делать на 30% мощнее чем расчетные данные генератора, и так чтобы на низких оборотах ветроколесо было чуть мощнее генератора. У нас при 120об/м 35ватт с генератора, значит ветроколесо должно при 120об/м иметь мощность около 40-50ватт. Если ветроколесо будет слабее, то генератор не позволит ему раскрутится до своих оборотов и в итоге обороты будут ниже и мощность тоже. Подробнее про расчёты ветроколес смотрите статьи в разделе, там всё есть.
Источник
Ветрогенератор своими руками: расчет винта и генератора переменного тока
Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.
Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.
Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.
Из статьи вы узнаете:
- Как правильно рассчитывать рабочий винт ветрогенератора.
- Какие типы генераторов больше всего подходят для сборки в домашних условиях.
- Как рассчитывать рабочие характеристики генератора переменного тока.
Расчет рабочего винта (ветроколеса)
Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.
Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.
Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.
Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.
Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.
Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:
Х = 600:0,4 = 1500 Ватт.
Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).
Вот нашел формулу: P = 0,5 *Q * S * V³ * Cp * Ng
- P – мощность (Вт);
- Q – плотность воздуха (1,23 кг/м³);
- S – площадь ометания ветроколеса (м²);
- V – скорость ветра (м/с);
- CP – коэффициент использования энергии ветра (0,35…0,45);
- Ng – КПД генератора;
Плотность воздуха – неизменна, площадь ометания ротора – тоже.
Эта формула обозначает мощность на выходных клеммах генератора. Учитывая, что значение мощности (1500 Вт) мы изначально взяли с учетом КИЭВ ветроколеса и КПД генератора, последние два значения из формулы убираем.
Мощность ветра, которую воздушный поток передает на ветроколесо, будет равна:
P = 0,5 *Q * S * V³
Все значения, входящие в формулу, нам известны (кроме площади – S). Решив простейшее уравнение, получим:
S = 1500/0,5*1,23*6³ = 11,292 м²
Площадь круга вычисляется по формуле:
S = πr²
где π – математическая константа (3,14), а r² – квадрат радиуса окружности ветроколеса.
В нашем случае r² = 11,292/3,14 = 3,596.
Следовательно, радиус ветроколеса будет равен 1,89 м, а его диаметр – 3,78 м.
Теперь необходимо удостовериться в том, что такое ветроколесо сможет при ветре – 6 м/с развить достаточное количество оборотов. В этом нам поможет коэффициент быстроходности ветряка – Z (у трехлопастных устройств Z=5).
Окружная (концевая) скорость лопастей ветряка с коэффициентом быстроходности Z5 будет равна произведению коэффициента (Z) на скорость ветра (6*5=30 м/с). Периметр ветроколеса диаметром 3,78 метра равен 11,87 м (L=2πr). Это длина его окружности по внешнему диаметру лопастей, то есть, расстояние, которое конец каждой лопасти проходит за один оборот. Следовательно, за секунду каждая лопасть сделает 2,53 оборота (30 м/с делим на 11,87 м) или 151 оборот за минуту. Что нам и требовалось.
Для того чтобы увеличить обороты, мы можем уменьшить диаметр ветроколеса, но мощность винта в этом случае снизится.
Уменьшение диаметра ветроколеса должно давать увеличение оборотов. Его можно уменьшать до тех пор, пока мощности винта будет хватать для прокручивания генератора под нагрузкой. Это и будут оптимальные параметры.
Мы представили вашему вниманию методику «грубого» расчета ветроколеса, основанную на характеристиках генератора и существующих потребностях в альтернативной электроэнергии.
Учитывая, что большой ветряк и построить сложно, и обслуживать – непросто, конструкцию рабочего винта можно рассчитать под конкретные условия эксплуатации (добавляя или уменьшая количество лопастей, а также меняя при этом их длину). Это поможет изменить коэффициент быстроходности, а, следовательно, и количество оборотов. Также при недостаточном количестве оборотов мощные ветрогенераторы (особенно многолопастные – тихоходные) оснащаются дополнительным редуктором-мультипликатором.
При малых скоростях вращения ротора выработки электроэнергии нет вообще. Мультипликатор решает эту проблему даже при малых оборотах.
Как бы мастер ни старался, самодельный ветрогенератор всегда будет далек от совершенства: самодельные лопасти, самодельные катушки – при изготовлении всего этого трудно соблюсти рекомендуемые аэродинамические и электротехнические параметры. И если в теории мы рассчитали, что ветроколесо диаметром 3,78 метра (при ветре 6 м/с) позволит получить нам 300 Вт*ч электроэнергии, на практике этот показатель можно смело уменьшить на 30%. Этим самым мы на стадии расчетов учтем недостатки кустарной сборки и возможные потери мощности.
Расчет генератора
Рассмотрим последовательность расчета трехфазного генератора переменного тока на постоянных магнитах. Трехфазные генераторы получили значительно более широкое распространение (нежели однофазные) за счет своих характеристик: отсутствие сильных вибраций и гула во время работы, улучшенные характеристики по мощности, току и т. д.
Мощность генератора зависит от целого ряда факторов: скорость вращения, величина магнитной индукции, количество витков на обмотках статора и т. д. Также она напрямую зависит от величины ЭДС генератора, которая определяется по формуле:
E=B•V•L
- E – ЭДС (В);
- B – величина магнитной индукции (Тс);
- V – линейная скорость движения магнитов (м/с) – произведение длины окружности ротора на количество оборотов;
- L – активная длина проводника (м), которую перекрывают магниты генератора.
Среднее значение индукции постоянных магнитов, используемых в составе генераторов переменного тока, равно 0.8 Тл. Его можно смело применять во время осуществления предварительных расчетов.
Рассмотрим последовательность предварительного расчета трехфазного аксиального генератора, пользуясь примером, который предложил один из пользователей FORUMHOUSE.
Вот, что я имею: 24 магнита (неодимовые) толщиной – 5 мм, шириной – 9.5 мм, длиной – 20 мм. Имею среднегодовую скорость ветра – 5 м/сек. Планирую сделать два ротора – по 12 магнитов на роторе (то есть – 12 полюсов). Соотношение полюсов и катушек – 2/3 (на каждые 2 полюса идет 3 катушки). Получаем 12 полюсов и 18 катушек (по 12 магнитов на каждом диске ротора). Ветроколесо выбрал диаметром 2 метра (двухлопастное). Его быстроходность – Z7. При ветре 5 м/с ветряк должен развивать 334 об/мин (334/60= 5,6 об/сек).
Пользователя интересовал расчет дискового генератора аксиального типа.
Преимущества аксиальных генераторов заключаются в отсутствии магнитного залипания, что позволяет им стартовать при сравнительно небольшой скорости ветра (около 2-х м/с). Основной их недостаток, в сравнении с классическими самодельными моделями, заключается в том, что для получения одинаковой мощности на сборку аксиального генератора необходимо потратить, как минимум, в 2 раза больше магнитов.
Под классическими моделями подразумеваются устройства, изготовленные из асинхронного двигателя или из стандартного автомобильного генератора.
Источник