Нагрудный пульсометр своими руками

Easy Pulse — самодельный датчик для измерения частоты пульса. Часть 1 — Теория и схема

На страницах портала Радиолоцман в разделе Схемы не так давно публиковалась статья «Измеритель пульса на микроконтроллере PIC16F628A», в которой рассматривались схема и конструкция ИК датчика для определения частоты пульса по изменению объема крови в артерии пальца. Такой метод относится к фотоплетизмографии – методу непрерывной графической регистрации изменений объема крови, отражающих динамику кровенаполнения сосудов исследуемых органов, части тела человека или животного, основанного на измерении оптической плотности. Однако спецификации датчика в этой статье не было. Несмотря на это, схема датчика была проста для повторения, причем можно было использовать различные ИК светодиоды и фотодиоды, и для корректной работы потребовалось бы лишь подобрать номинал токоограничительного резистора и резистора обратной связи.

Внешний вид платы ИК-датчика Easy Pulse

В этой статье речь пойдет о модернизированной версии сенсора, получившей название Easy Pulse. В проекте используется специальный ИК-датчик TCRT1000, который упрощает схему и конструкцию, так как ИК-светодиод и фототранзистор расположены в одном компактном экранированном корпусе. Его конструкция позволит снизить помехи от внешней засветки и повысить эффективность датчика. Конструктивно датчик представляет собой компактную печатную плату, содержащую также схему преобразования и нормирования сигнала. На выходе датчика мы получаем цифровые импульсы, синхронизированные с пульсом (Рисунок 1). Датчик может подключаться к АЦП или к цифровому входу микроконтроллера для дальнейшей обработки и вычисления значения пульса (количество ударов сердца в минуту).

Теория

Проект основан на принципе фотоплетизмографии, который является неинвазивным методом измерения изменения объема крови в тканях с помощью источника света и фотодетектора. Поскольку изменение объема крови синхронно с биением сердца, этот метод может использоваться для расчета частоты сердечных сокращений. Существует два основных типа фотоплетизмографии: один основан на пропускании света, другой на отражении. В первом случае световой пучок пропускается сквозь часть тела человека (например, через палец или мочку уха), а фотодетектор определяет результирующую интенсивность света, поэтому источник излучения и приемник располагаются напротив друг друга. Во втором случае источник света и фотоприемник располагаются на одной стороне, и информацию о пульсе несет отраженный сигнал. Измерение пульса по такому методу может производиться на любой части человеческого тела. При любом методе измерений в интенсивности света, отраженного от объекта или прошедшего через часть тела, будут обнаружены флуктуации в соответствии с пульсирующим потоком крови, вызванных биением сердца.

На Рисунке 2 схематически изображен датчик для получения сигнала пульса от пальца человека. ИК-светодиод используется для освещения пальца субъекта. В зависимости от объема крови в пальце, поглощается больше или меньше света, следовательно, меняется интенсивность отраженного света. Графическое представление зависимости изменений сигнала во времени и есть сигнал фотоплетизмографии.

Метод пальцевой фотоплетизмографии (исследование отраженного сигнала).

Фотоплетизмограмма имеет несколько составляющих, она регистрирует волны первого, второго и третьего порядка. Волны второго и третьего порядка относятся к медленным колебаниям (их можно назвать постоянной составляющей). Волны 1-го порядка относятся к быстрым колебаниям и соотносятся с пульсом (можно назвать переменной составляющей). Они отражают движение объема крови в измеряемой точке во время систолы и диастолы и могут использоваться в качестве источника информации о пульсе. Для извлечения данного сигнала потребуются эффективные схемы усиления и нормирования сигнала.

Читайте также:  Каретка для заточки ножей рубанка своими руками

Принципиальная схема

Как было сказано выше, в качестве ИК сенсора используется TCRT1000 – экранированный оптический отражательный датчик компании Vishay , в состав которого входят ИК-светодиод и фототранзистор. На Рисунке 3 изображена схема включения внешних компонентов, необходимых для управления датчиком. Подача высокого уровня на вход Enable включает ИК-светодиод, т.е. активирует сенсор TCRT1000. Палец человека сверху датчика действует как отражатель, фототранзистор фиксирует отраженный свет.

Схема включения внешних компонентов для управления оптическим датчиком TCRT1000.

На выходе датчика (VSENSOR) мы получим периодический физиологический сигнал, связанный с изменением интенсивности отраженного ИК-излучения, обусловленным пульсирующим объемом крови в пальце. Сигнал, таким образом, синхронизирован с частотой сердцебиения. Следующая схема (Рисунок 4) представляет собой первый этап преобразования сигнала от ИК-датчика, на котором выполняется подавление достаточно больших медленных волн (постоянной составляющей) и повышение слабых быстрых волн (переменной составляющей), которые несут информацию о пульсе.

Схема пассивного фильтра верхних частот и активного фильтра нижних частот – первый этап преобразования и нормирования сигнала от ИК-датчика TCRT1000.

На схеме выше видно, что сигнал с ИК-сенсора сначала проходит через пассивный фильтр верхних частот (ФВЧ), чтобы избавиться от постоянной составляющей. Частота среза фильтра (fc) равна 0.7 Гц. Далее сигнал проходит через активный фильтр нижних частот (ФНЧ), выполненный на операционном усилителе. Коэффициент усиления фильтра равен 101, частота среза – 2.34 Гц. Такое решение позволяет устранить нежелательный сигнал постоянной составляющей и высокочастотные шумы, в том числе, наводку сети переменного тока 50 Гц (60 Гц), и усилить нужный сигнал, несущий информацию о пульсе, в 101 раз.

Далее следует еще одна подобная схема фильтрации (ФВЧ, ФНЧ) и усиления сигнала (Рисунок 5). Таким образом, общий коэффициент усиления составляет 101 × 101 = 10201. В результате, две стадии фильтрации и усиления преобразуют входной сигнал фотоплетизмографии в ТТЛ импульсы, которые синхронны с сердцебиением. Частота этих импульсов (f) связана с частотой сердечных сокращений (BPM) формулой:

Beats per minute (BPM) = 60 × f

Потенциометр 5 кОм на выходе первой схемы фильтрации и усиления нужен для достижения общего коэффициента менее 10201. Светодиод на выходе второй схемы фильтрации и усиления будет мигать с частотой сердцебиения. Заключительный узел схемы представляет собой простой не инвертирующий буфер для понижения выходного сопротивления. Это важно, если для чтения сигнала используется АЦП микроконтроллера.

Вторая стадия фильтрации и усиления сигнала и выходной неинвертирующий буфер.

Все операционные усилители, используемые в схеме, находятся в одной четырехканальном микросхеме – MCP6004. Усилители имеют низкое энергопотребление и сохраняют работоспособность при напряжении питания в диапазоне от 1.8 до 6.0 В.

ИК-сенсор можно установить на плату, а можно вынести на шлейфе (Рисунок 6). Это придает гибкость при использовании, так как в таком случае его можно закрепить между двумя пальцами или на ладони.

ИК-сенсор может подключаться к плате при помощи шлейфа.

Диапазон напряжений питания платы сенсора, равный 3 – 5 В, позволяет использовать ее с семействами микроконтроллеров с напряжением питания 3.3 В или 5 В.

Читайте также:  Краска для плодовых деревьев своими руками

Часть 2 – Проверка основных параметров, работа с датчиком.

Перевод: Vadim по заказу РадиоЛоцман

Источник

Как сделать прибор для измерения пульса

Простейшие приборы для измерения пульса делаются на основе инфракрасного светодиода и фотодиода, поэтому их точность и качество не очень. Сегодня мы хотим поговорить о усовершенствованной версии проекта, которая использует отражательный оптический датчик для фотоплетизмографии TCRT1000. Использование TCRT100 упрощает процесс сборки датчика, так как диодный излучатель и детектор располагаются бок о бок в общем освинцованном пакете, блокируя окружающий рассеянный свет, которые в противном случае мог бы повлиять на характеристики датчика. Также разработана печатная плата, которая несет на себе оба датчика сигнала и блока обработки сигнала. Выходной импульс может подаваться либо на канал АЦП или цифровой вход PIC микроконтроллера для дальнейшей обработки и получения частоты пульса в ударах в минуту на индикаторе.

Этот проект основан на принципе фотоплетизмографии (ФПГ), которая представляет собой неинвазивный метод измерения изменение объема крови в тканях с помощью источника света и детектора. Поскольку изменение объема крови синхронно с биением сердца, этот метод может использоваться для расчета частоты сердечных сокращений. Коэффициент пропускания и коэффициент отражения являются 2-мя основных параметрами фотоплетизмографии. Для ФПГ источник света и светодетектор помещается возле ткани для измерения результирующего света. Из-за ограниченной глубины проникновения света через ткани органов, ФПГ применим к ограниченной части тела, например для пальца или мочки уха. Тем не менее, благодаря высокой отражательной способности ФПГ, источник света и детектор света размещены на одной стороне части тела. Полученный сигнал по величине будет колебаться в зависимости от пульсового кровотока, вызванных биением сердца.

Электрическая схема

Датчик, используемый в данном проекте является TCRT1000 — это отражательный оптический датчик с инфракрасным излучателем света и фототранзистор, расположенные вместе и заключенные внутри модуля, так что есть минимальное воздействие окружающего видимого света. На схеме ниже указаны внешние цепи смещения для датчика TCRT1000. Количество света, отраженного назад от пальца, контролируется фототранзистором.

В схеме, выходной сигнал датчика проходит через rс фильтр высоких частот (ФВЧ), чтобы избавиться от постоянной составляющей. Отсечение частоты ФВЧ установлено на уровне 0.7 Гц. Следующий этап — активный фильтр низких частот (ФНЧ), который состоит из операционного усилителя ОУ. Коэффициент усиления и частота среза ФНЧ задаются 101 и 2.34 Гц, соответственно. Таким образом, комбинация ФВЧ и ФНЧ помогает удалить нежелательный сигнал постоянного тока и высокочастотные шумы 50 Гц электрической сети, в то же время как усиливая низкие амплитуды импульсного сигнала (переменной составляющей тока).

На выходе из первого каскада идет аналогичный ФВЧ/ФНЧ для дальнейшей фильтрации и усиления. Таким образом, общий коэффициент усиления по напряжению достигается от двух каскадов 101 х 101 = 10201. Частота (F) этих импульсов связана с частотой сердечных сокращений (уд / мин):

Подстроечный потенциометр 5К ставится на выходе первого каскада в случае, если суммарное усиление должно быть менее 10201. Светодиод подключен к выходу второго каскада, он будет мигать, когда будет обнаружено сердцебиение. Заключительный каскад представляет собой простой неинвертирующий буфер, чтобы снизить выходное сопротивление. Это полезно, если канал АЦП микроконтроллера используется для чтения усиленного сигнала ФПГ.

Использование пульсомера

Поместите кончик указательного пальца на датчик. Не нажимайте слишком сильно на датчик. Через пару секунд схема стабилизирует сигнал и вы увидите как светодиод мигает синхронно с биением сердца. Выходной сигнал (Uвых) можно подать на вход АЦП микроконтроллера для измерения частоты пульса. Выходное напряжение сигнала можно также просмотреть на экране осциллографа. Следующая фотография показывает этот сигнал.

Читайте также:  Наклейка карбона своими руками

Источник

Пульсометр (монитор сердечного ритма) своими руками

Если хочется собрать какую-то необычную простую но интересную электронную самоделку, игрушку то данная схема подойдёт лучшим образом, так как данный пульсометр или монитор сердечного ритма сделанный своими руками своей работой может развлечь Вас и Ваших друзей. Так как это по крайней мере весело, приложив палец к сенсору наблюдать как светодиод вспыхивает в такт Вашему пульсу совместно со звуковым сигналом.

Пульсометр (монитор сердечного ритма) своими руками

Что понадобится чтобы сделать пульсометр:

  • ИК светодиод и фотодиод, их можно купить дёшево сразу парой по 50 штук в партии тут — http://ali.pub/4g6d29
  • Микросхема LM358 — http://ali.pub/4g6dj6;
  • Красный светодиод;
  • Активный базер (пищалка), не обязательно;
  • Конденсатор 4,7 мкФ х 16В;
  • Конденсатор 100 нФ;
  • Разъём для кроны;
  • Резистор 220 Ом – 2шт.;
  • Резистор 10 кОм;
  • Резистор 47 кОм;
  • Резистор 6,8 кОм;
  • Резистор 680 кОм;
  • Держатель для ИК свето и фото диодов (не обязательно);
  • Кусок макетной платы.

Пульсометр (монитор сердечного ритма) своими руками

Как сделать простой пульсометр (монитор сердечного ритма), пошаговая инструкция:

Распаиваем на макетной плате все радиоэлементы согласно этой схемы:

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

Как видите схема пульсометра очень простая и если радиодетали рабочие то схема начинает работать без наладки сразу после подключения питания. Убедимся, что схема работает, при включении красный светодиод может сразу засветиться, так как ИК диод может улавливать в комнате инфракрасное излучение, но стоит прикрыть фотодиод (тот что чёрный), то красный светодиод тухнет.

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

Теперь ставим свой палец на сенсор из свето и фото ИК диодов и красный светодиод тут же начинает пульсировать в такт Вашему пульсу.

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

При желании можно добавить схеме звук который подавать сигнал в такт с красным светодиодом. Для этого просто подключаем активный базер (со встроенным генератором) параллельно красному светодиоду в такой же как он полярности.

Пульсометр (монитор сердечного ритма) своими руками

Кроме того для подсчитывания пульса можно подключить счётчик импульсов с предыдущей статьи, также к контактам красного светодиода или же пищалки, подключаем его через оптопару, теперь можно подсчитать количество ударов за минуту, для этого для начала обнуляем счётчик, подносим палец к ИК сенсору пульсометра и включаем секундомер, отмеряем 1 минуту и убираем палец, на счётчике останется показание сколько было ударов сердца за эту минуту.

Пульсометр (монитор сердечного ритма) своими руками

Пульсометр (монитор сердечного ритма) своими руками

Всё, простой пульсометр (монитор сердечного ритма) сделанный своими руками готов, останется подобрать для него удобный корпус, чтобы устройство выглядело законченным.

Пульсометр (монитор сердечного ритма) своими руками

Источник

Оцените статью
Своими руками