- МУЛЬТИВИБРАТОР НА 3, 4, 5, 6 КАНАЛОВ
- Схемы транзисторных мультивибраторов
- Мультивибратор на 2 канала
- Мультивибратор на 3 канала
- Мультивибратор на 4 канала
- Мультивибратор на 5 каналов
- Мультивибратор на 6 каналов
- Особенности подбора деталей
- Напряжение питания и ток
- Мультивибратор
- Симметричный мультивибратор
- МУЛЬТИВИБРАТОР
МУЛЬТИВИБРАТОР НА 3, 4, 5, 6 КАНАЛОВ
Схем обычных мультивибраторов на 2 лампочки (или светодиода), так называемых «двухфазных» в интернете вагон. Трёхфазные, или как их ещё называют 3-х канальные, тоже встречаются. А вот транзисторного мультивибратора на 4 или 5 фаз найти не удалось ни в Гугле, ни в Яндексе. Совсем. Была нужна мигалка в игрушечную машину на 4 LED, чтоб свет бегал типа по-кругу, как у спецтехники. Поэтому пришлось запускать sPlan и рисовать её самому. Не для себя — такие мелочи прекрасно представляются на мысленном экране, а для вас, начинающие радиолюбители, чтоб упростить сборку этой интересной штуки.
Схемы транзисторных мультивибраторов
Мультивибратор на 2 канала
Начнём с классики, чтоб было понятно откуда ноги растут:
Мультивибратор на 3 канала
Добавим ещё один каскад, превратим в 3-х фазный:
Мультивибратор на 4 канала
Мультивибратор на 5 каналов
Тут уже на 5 светодиодов:
Мультивибратор на 6 каналов
И наконец шестифазный мультик:
Думаю всем стал понятен принцип добавления каскадов в базовую 2-х светодиодную схему. Но не всё так просто с её работой.
Особенности подбора деталей
Разные схемы от разных авторов имеют различные номиналы радиоэлементов. И начинающий любитель радио (да и более опытные иногда) пребывает в растерянности — что конкретно туда паять чтоб не пришлось потом по 10 раз перепаивать при настройке?
Я провёл ряд экспериментов и результатами сейчас буду делиться далее:
- Транзисторы. Любые N-P-N с высоким коэффициентом усиления. Не важно какие именно — брал наугад импортные из большой коробки даже не читая маркировку. Просто прикидывал мультиметром в диодном режиме прозвонки его структуру (переходы от базы к коллектору и к эмиттеру должны звониться как диоды). Работали все.
- Конденсаторы. Если нужно быстрое перемигивание — ставьте на 10 мкФ, если медленнее — 50 мкФ. Слишком большую ёмкость брать не стоит, может вообще перестать работать. Но гораздо удобнее настраивать частоту миганий подбирая.
- Резисторы. Поставить базовые резисторы можете от 10 кОм, но тогда конденсаторы будут разряжаться быстро и соответственно быстро мигать. Чтоб замедлить это дело выгоднее не конденсаторы увеличивать, а сопротивления. Поставьте на 300 кОм и будет вам счастье.
Напряжение питания и ток
Спаяли. Заработало. А от чего питать? Мультивибратор начинает работать уже от 1,5 вольт (конечно с желтыми или красными светодиодами). То есть ограничение по нижнему пределу напряжения упирается в вольтаж LED элементов. И поставив белые светики потребуется питать уже от литиевого АКБ, так как 3 В (2 АА батареи) будет маловато. С ростом напряжения частота мигания замедляется — учитывайте этот момент.
Верхний предел напряжения определяется вольтажом конденсаторов и параметрами транзисторов, насколько они выдержат Uкэ. Что касается токоограничения — нет смысла вешать резистор на каждый из светодиодов — достаточно одного общего на 100 — 500 Ом по плюсу или минусу (без разницы) всей схемы. Проверено — отлично работает!
Потребление тока должно быть на уровне одного светодиода (ведь в каждый момент времени светится только один LED элемент, даже в шестифазном мультике). То есть если ставите светодиоды обычные на 5 мм — задавайте 5-10 мА, если мощные полуваттные — соответственно ток выставляйте на его паспортное значение — это около 100-200 мА.
Траблшот. Если светят все светодиоды — значит все транзисторы открыты или пробиты. Если ничего не светит — значит LED либо транзисторы сгорели, закрыты, или не поступает напряжение (возможно недостаточное для зажигания светодиодов). Схема может потребовать подбора транзисторов, и чем больше каскадов — тем она делается капризнее! Если одно плечо светит дольше другого — изменить ёмкость или сопротивление, для выравнивания скважности генерации до 50/50.
Конечно можно собрать мигалку на микросхемах, контроллерах, где эффект будет даже с подвыподвертом, но есть ли смысл усложнять дело? Может ещё на радиолампах попробуете сделать? Как вам например мультивибратор на 6Н2П 🙂
В общем собирайте, проверяйте на макетной плате, паяйте и прокачивайте свой скилл электронщика, всем пока!
Источник
Мультивибратор
Симметричный мультивибратор
Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.
От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.
Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.
Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.
Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными.
На рисунке представлена схема симметричного мультивибратора.
В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (tи) = t паузы (tп). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.
Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:
,где f — частота в герцах (Гц), С — ёмкость в микрофарадах (мкФ) и R — сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.
Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.
Основными характеристиками импульсного сигнала принято считать следующие параметры:
Частота. Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.
Длительность импульса. Измеряется в долях секунды: мили, микро, нано, пико и так далее.
Амплитуда. В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.
Скважность. Отношение периода (Т) к длительности импульса (t). Если длина импульса равна 0,5 периода, то скважность равна двум.
Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.
Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.
Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.
Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.
Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах.
При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.
Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.
Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.
Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.
Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром.
Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов, которым можно измерить ёмкость конденсатора.
Источник
МУЛЬТИВИБРАТОР
Работа схемы мультивибратора
Схематически мультивибратор состоит из двух усилительных каскадов с общим эмиттером, выходное напряжение каждого из которых подается на вход другого. При подсоединении схемы к источнику питания Ек оба транзистора пропускают коллекторные точки — их рабочие точки находятся в активной области, поскольку на базы через резисторы RБ1 и RБ2 подается отрицательное смещение. Однако такое состояние схемы неустойчивое. Из-за наличия в схеме положительной обратной связи выполняется условие ?Ку>1 и двухкаскадный усилитель самовозбуждается. Начинается процесс регенерации — быстрое увеличение тока одного транзистора и уменьшение тока другого транзистора. Пусть в результате любого случайного изменения напряжений на базах или коллекторах несколько увеличится ток IK1 транзистора VT1. При этом увеличится падение напряжения на резисторе RK1 и коллектор транзистора VT1 получит приращение положительного потенциала. Поскольку напряжение на конденсаторе СБ1 не может мгновенно измениться, это приращение прикладывается к базе транзистора VT2, подзапирая его. Коллекторный ток IK2 при этом уменьшается, напряжение на коллекторе транзистора VT2 становится более отрицательным и, передаваясь через конденсатор СБ2 на базу транзистора VT1, еще больше открывает его, увеличивая ток IK1. Этот процесс протекает лавинообразно и заканчивается тем, что транзистор VT1 входит в режим насыщения, а транзистор VT2 — в режим отсечки. Схема переходит в одно из своих временно устойчивых состояний равновесия. При этом открытое состояние транзистора VT1 обеспечивается смещением от источника питания Ек через резистор RБ1, а запертое состояние транзистора VT2 — положительным напряжением на конденсаторе СБ1 (Ucm = UБ2 > 0), который через открытый транзистор VT1 включен в промежуток база — эмиттер транзистора VT2.
Для сооружения мультивибратора нам из радиокомпонентов понадобятся:
1. Два транзистора типа КТ315.
2. Два электролитических конденсатора на 16в, 10-200микрофарад (Чем меньше емкость, тем чаще моргание).
3. 4 резистора номиналом: 100-500 ом 2 штуки (если вы ставите 100 ом, то схема будет работать даже от 2.5в), 10 ком 2 штуки. Все резисторы мощностью в 0.125 ватт.
4. Два не ярких светодиода (Любого цвета, кроме белого).
Электрическая схема мультивибратора:
Печатная плата формата Lay6 в архиве. Приступим к изготовлению. Сама печатная плата имеет такой вид:
Припаивываем два транзистора, не перепутайте коллектор и базу на транзисторе — это частая ошибка.
Паяем конденсаторы 10-200 Микрофарад. Обратите внимание, что конденсаторы на 10 вольт крайне нежелательны для использование в этой схеме, если вы будете подавать питание 12 вольт. Помните, что у электролитических конденсаторов существует полярность!
Идем дальше. Паяем резисторы номиналом в 100-500 ом (500 ом использовать крайне не желательно, если у вас нету блока питания на 12вольт).
Мультивибратор почти готов. Остается припаять светодиоды, и входные провода. Фото готового устройства выглядит примерно так:
И чтобы вам всё стало наглядно понятно, видеоролик работы простого мультивибратора:
На практике, мультивибраторы применяют в качестве генераторов импульсов, делителей частоты, формирователей импульсов, бесконтактных переключателей и так далее, в электронных игрушках, устройствах автоматики, вычислительной и измерительной техники, в реле времени и задающих устройствах. С вами был [PC]Boil-:D. (материал был приготовлен по запросу Демьян’a)
Форум по обсуждению материала МУЛЬТИВИБРАТОР
Умный аварийный резервный светодиодный источник света — простая схема автоматически включающейся LED подсветки.
Описание нового Блютус протокола беспроводной связи — Bluetooth Mesh.
Инфракрасный датчик приближения объектов к транспортным средствам — схема для самостоятельной сборки на базе E18-D80NK.
Источник