2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Регулируемый мощный импульсный БП на 60 В 40 А
Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. Схема на базе линейного регулятора при мощности более 2 кВт была бы невозможна в использовании. По этой причине была выбрана топология прямого преобразователя с двумя ключами, то есть полумостовая схема. Используются IGBT-транзисторы, а роль контроллера возложена на микросхему UC3845.
Схема принципиальная ИБП на 2 кВт
Сетевое напряжение сначала проходит через фильтр помех, а затем выпрямляется и фильтруется с помощью конденсаторов C4. Для уменьшения пускового тока был последовательно подключен переключатель с Re1 и R2. Катушка реле и вентилятора (обычный, от блока питания компьютера) питаются от 12 В, получаемых путем понижения напряжения 17 В от вспомогательного источника. Резистор R1 должен быть выбран как так что напряжение на упомянутой катушке и вентиляторе составляет 12 В. Вспомогательный источник питания был построен на основе м/с TNY267. Резистор R27 реализует защиту от пониженного напряжения этого источника питания — он не запустится при напряжении ниже пика 220 В.
Контроллер UC3845 имеет сигнал 50 кГц на выходе и максимальную скважность 47%. Он питается от стабилитрона, который снижает напряжение питания на 5,6 В (с выходом 11,4 В), а также сдвигает пороги UVLO с 7,9 В (ниже) и 8,5 В (вверху) до соответственно 13,5 и 14,1 В. Следовательно, источник питания начнет работать при напряжении 14,1 В, и не будет ниже 13,5 В, благодаря чему защита IGBT была получена от работы без насыщения. Первоначально это было невозможно, потому что пороги UC3845 были слишком низкими.
Эта схема управляет MOSFET T2, который, в свою очередь, питает управляющий трансформатор Tr2. В результате были получены гальваническая развязка и плавающий контроль. Этот трансформатор, через системы формирования с T3 и T4, управляет IGBT T5 и T6 затворами. Эти транзисторы переключают выпрямленное сетевое напряжение (325 В), питая силовой трансформатор Tr1.
Напряжение от вторичной обмотки этого трансформатора затем выпрямляется с использованием выпрямителя, подключенного в транзитной системе, и сглаживается дросселем L1 и конденсаторами C17. Обратная связь по напряжению подается с выхода на вывод 2 UC3845. Напряжение можно выставить с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется, поскольку контроллер был подключен к вторичной стороне напряжения и изолирован от сети. Обратная связь по току была реализована с использованием трансформатора тока Tr3 и выведена на выход 3 UC3845. Порог ограничения тока можно установить с помощью P2.
Транзисторы T5, T6, диоды D5, D5′, D6, D6′, D7, D7′ и диодный мост обязательно должны быть размещены на радиаторе. Диоды D7, конденсаторы C15 и защитные цепи R22 + D8 + C14 должны быть как можно ближе к IGBT. Светодиод 1 указывает, что устройство включено, светодиод 2 — режим ограничения тока или ошибка. Он будет светиться, когда схема не находится в режиме стабилизации напряжения. В состоянии стабилизации на выходе 1 UC3845 составляет 2,5 В, в остальных случаях около 6 В. LED сигнализация может быть убрана.
Катушки импульсного БП
Выходной трансформатор Tr1 использован от старого источника питания. Коэффициент трансформации находится в диапазоне от 3:2 до 4:3, а его сердечник — ферритовый, без зазора. Если кто-то хочет сам его намотать, используйте сердечник, похожий на сварочный аппарат инвертора или около 6,4 см2 (допустимый диапазон 6-8 см2). Первичная обмотка должна состоять из 20 витков, намотанных 20 проводами диаметром 0,5 мм, а на вторичную обмотку — 14 витков 28 проводами одинакового диаметра. Медные полоски также могут быть использованы. К сожалению, использование одного толстого провода невозможно из-за скин-эффекта.
Управляющий трансформатор Tr2 имеет три обмотки по 16 витков. Они намотаны одновременно (в трех направлениях) тремя скрученными изолированными проводами. Сердечником является EI (может быть EE) без зазора, взятый из блока питания ATX. Этот сердечник имеет поперечное сечение центральной части примерно 80..120 мм2.
Трансформатор тока Tr3 состоит из 1 катушки и 68 витков на тороидальном сердечнике. Вообще размер и количество оборотов не являются критическими. Но для другого коэффициента значение R15 должно быть скорректировано.
Трансформатор вспомогательного источника питания Tr4 был намотан на ферритовый сердечник EE с зазором и диаметром поперечного сечения основы около 16-25 мм2. Он взят от вспомогательного трансформатора инвертора вышеупомянутого источника питания ATX. Направление включения обмоток всех трансформаторов (отмечены точками) должно быть правильным.
Индуктор извлеченный из микроволновой печи можно использовать в качестве дросселя сетевого фильтра. Выходной дроссель L1, как и трансформатор, также от готового ИБП. Он состоит из двух параллельных дросселей 54 мкГн на порошковых сердечниках, и результирующая индуктивность составляет 27 мкГн. Каждый дроссель намотан двумя проводами 1,7 мм.
L1 находится на минусовой стороне, так что катоды диодов могут быть прикреплены к радиатору без изоляции. Максимальный ток источника питания составляет около 2500 Вт, а КПД при полной нагрузке превышает 90%.
Замена деталей ИБП
Здесь использовались транзисторы IGBT типа STGW30NC60W. Они могут быть заменены на IRG4PC40W, IRG4PC50W, IRG4PC50U, STGW30NC60WD или аналогичные с соответствующей мощностью и скоростью работы. Выходные диоды могут быть любого быстрого типа с достаточным рабочим током. Для верхних диодов (D5) средний ток не превышает 20 А, для нижних диодов (D6) — 40 А. Таким образом, верхние диоды могут быть выбраны на половину тока нижних. Верхними могут быть два HFA25PB60 / DSEI30-06A или один DSEI60-06A / STTH6010W / HFA50PA60C. Нижние — два DSEI60-06A / STTH6010W / HFA50PA60C или четыре HFA25PB60 / DSEI30-06A.
Диодный радиатор должен быть рассчитан на мощность рассеивания 60 Вт. Общая мощность тепловыделения на IGBT может достигать 50 Вт. Максимальные потери тепла в мостике составляют около 25 Вт.
Схема подачи электропитания напоминает ту, которая часто используется в сварочных аппаратах. Переключатель S1 обеспечивает аварийное отключение источника питания, поскольку не рекомендуется часто отключать источник питания с помощью переключателя питания (особенно при работе в качестве лабораторного).
Резистивная искусственная нагрузка была применена для тестирования блока питания. Этот обогреватель 220 В 2000 Вт от котла был переделан на мощность 60 В 2000 Вт.
Потребляемая мощность в выключенном состоянии составляет всего около 1 Вт. Выключатель S1 можно не ставить. Источник питания также может быть построен как источник постоянного напряжения. В этом случае было бы хорошо оптимизировать параметры трансформатора Tr1 для максимальной эффективности.
Внимание: конструкция подобного импульсного источника питания не предназначена для начинающих, поскольку большая часть его схемы подключена к сети 220 В. При небрежной конструкции на выходе может появиться сетевое напряжение! Также необходимо использовать подходящий шнур питания. Конденсаторы внутри устройства могут оставаться заряженными даже после выключения его от розетки!
Источник
Мощный импульсный блок питания своими руками схема
Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но. схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.
В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов — емкость подбирается исходя из расчета 1 ватт — 1мкФ.
Диодный мост — 30 Ампер 1000 Вольт — готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы — IRFP460, старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска — 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор — в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.
Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер — для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер — для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.
Генератор построен на TL494, настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 — вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45 витков.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 — с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт — UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.
Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем — при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 — заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.
Во многих источниках упомянули, что данный блок не включается без нагрузки — но это не так! Он очень даже хорошо запускается и на всех обмотках есть напряжение.
Никогда не выставляйте максимальное выходное напряжения — блок может в нагруженном состоянии издавать свист — на своем опыте понял, что это полностью безопасно, но неприятно.
Источник