Самодельный драйвер для мощных светодиодов
Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись «Калькулятором светодиодов».
Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД — до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока — резисторы — обеспечить это не могут по своей природе.
Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье «Драйвера для светодиодов».
Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.
Простой драйвер. Собран на макетке, питает могучий Cree MT-G2
Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением VLED / VIN, где VLED – падение напряжения на светодиоде, а VIN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, VIN должно быть больше VLED на, как минимум, 1-2В.
Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2. Напряжение источника питания — 9В, падение напряжения на светодиоде — 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.
Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.
Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.
Еще более простой драйвер на микросхеме LM317
Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница VIN и VLED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.
На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.
Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241.
Драйвер для мощных светодиодов на микросхеме QX5241
Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.
Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 — любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.
Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.
Готовые изделия для питания мощных светодиодов можно посмотреть здесь.
Существует огромное количество принципиальных схем стабилизаторов тока, которые могут быть использованы как драйвера для мощных светодиодов. Производится также бесчисленное количество специализированных микросхем, на базе которых можно собирать драйвера самой разной сложности – все ограничивается только Вашим желанием и потребностями. Мы рассмотрели только самые простые самодельные драйвера. Читайте также статью, в которой рассматривается схема драйвера для светодиода от сети в 220В.
Источник
Драйвер светодиода своими руками на микросхеме LM3406
Микросхема LM3406 представляет собой импульсный понижающий драйвер мощного светодиода.
- Выходной ток до 1.5 Ампер
- Встроенный полевой транзистор, который способствует увеличению КПД и уменьшению количества внешних компонентов
- Поддерживает цифровую (ШИМ) и аналоговую регулировку яркости
- Защита от перегрева
- Может работать без конденсатора на выходе
- Широкий диапазон питающих напряжений — от 6 до 40В
Схему драйвера светодиода я взял типовую из даташита, только добавил некоторые мелочи:
- Разъем питания
- Нулевые резисторы по входу и выходу
- Светодиодный индикатор питания
- Защиту ножки обратной связи
- Диод для защиты от обрыва в цепи светодиодов
Замечу, что в даташите есть несколько схем, я выбрал схему с защитой от обрыва в нагрузке. Схема получилась вот такая:
В качестве индуктивности использовано желто-красное кольцо из распыленного железа, снятое со старой материнской платы.
Родную обмотку снимаем, наматываем новую обмотку, порядка 20 витков медным проводом диаметром 0.5 мм. Я намотал проводом от витой пары.
Либо ставим готовую индуктивность 22 мкГн, способную протащить через себя ток не менее 1А. Плата выполнена из двустороннего стеклотекстолита толщиной 1.5 мм. На обратной стороне платы оставлен слой меди для более быстрого распределения тепла по плате.
Обратная сторона платы драйвера:
На брюшке микросхемы расположен теплоотводящий контакт, который обязательно должен быть припаян к медному полигону на плате, для должного охлаждения микросхемы. При перегреве микросхемы сработает температурная защита. В совокупности с защитой от обрыва нагрузки, при правильном питании микросхемы, «убить» её практически нереально.
Выходной ток драйвера задаётся резистором, подключенным между выводом «CS» и землёй. Ток рассчитывается по формуле:
Ток_драйвера_Ампер = 0,2 / Сопротивление_резистора_Ом
Я составил резистор из трёх параллельно соединённых резисторов по 1 Ом. Общее сопротивление получившегося резистора — примерно 0,333 Ом.
0,2 / 0,333 Ом = 0,6 А
Выходной ток драйвера равен 0,6 Ампер.
В качестве нагрузки подключим к драйверу 2 светодиода CREE XP-G, соединённых последовательно:
На вход драйвера подадим 12 Вольт
Ну и напоследок, табличка с результатами КПД:
Напряжение падения на светодиодах,
Ток через светодиоды,
Мощность на светодиодах,
Когда я собирал данный светодиодный драйвер 2 года назад, КПД был выше. Скорее всего, причина в использованной индуктивности. Но так как меня устраивает КПД 90%, то переделывать индуктивность не буду.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
DA1 | LED драйвер | 1 | Поиск в магазине Отрон | В блокнот | ||
VD1 | Диод Шоттки | 1 | SMD | Поиск в магазине Отрон | В блокнот | |
VD2 | Диод Шоттки | 1 | SMD | Поиск в магазине Отрон | В блокнот | |
C1, C5, C8 | Конденсатор | 0.1 мкФ 35В | 3 | SMD 1206 | Поиск в магазине Отрон | В блокнот |
C2, C4 | Конденсатор электролитический | 470 мкФ 35В | 2 | Поиск в магазине Отрон | В блокнот | |
C3, C7 | Конденсатор | 0.1 мкФ 35В | 2 | SMD0805 | Поиск в магазине Отрон | В блокнот |
C6 | Конденсатор | 1 мкФ 35В | 1 | SMD0805 | Поиск в магазине Отрон | В блокнот |
R1, R4 | Резистор | перемычка (0) | 2 | SMD1206 | Поиск в магазине Отрон | В блокнот |
R2 | Резистор | 1 | SMD0805 | Поиск в магазине Отрон | В блокнот | |
R3 | Резистор | 1 | SMD0805 | Поиск в магазине Отрон | В блокнот | |
R5, R8, R9 | Резистор | 3 | SMD1206 | Поиск в магазине Отрон | В блокнот | |
R6 | Резистор | 1 | SMD0805 | Поиск в магазине Отрон | В блокнот | |
R7 | Резистор | 1 | SMD1206 | Поиск в магазине Отрон | В блокнот | |
R10 | Резистор | 1 | SMD0805 | Поиск в магазине Отрон | В блокнот | |
L1 | Катушка индуктивности | 10 мкГн | 1 | любая, на ток не менее 1,5 А | Поиск в магазине Отрон | В блокнот |
HL1 | Светодиод | любой | 1 | SMD0603 | Поиск в магазине Отрон | В блокнот |
Добавить все |
Прикрепленные файлы:
Оценить статью
Средний балл статьи: 5 Проголосовало: 2 чел.
Комментарии (13)
| Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
В общем собрал схему. Поэкспериментировал и несколько раз перечитал даташит. Комментарии к тому что сделал автор статьи.
1. На авторской схеме явно излишние С1, С5, С8. Как сама микросхема толерантна к высокочастотным помехам, так и LED диоды.
2. Ставить 0 Ом резисторы в качестве предохранителя — КРАЙНЕ спорное решение.
3. На схеме автора номинал С3 = 0,1мкФ. В даташите латинским по белому указано что он болжен быть 22нФ. Но это не криминально. Я пробовал и так и эдак. Результат одинаковый.
4. Номинал С4 сильно завышен. Если драйвер будет использоваться БЕЗ диммирования, то это не криминально. Если с ШИМ диммированием, то при включении на минимальной яркости диод загорается только через ПОЛ МИНУТЫ!! То есть лампа не загорается пока не зарядятся эти 470мкФ. Сам производитель на своей эвалюэйшен боард там поставил танталовый 2,2мкФ
5. Если будуте использовать ШИМ диммирование, то номинал резистора R6 должен быть от 4,7кОм до 10кОм, но уж никак не 100 Ом. Это ВАЖНО, так как ток там не должен быть превышать 70мкА.
Но это все критика. А вот «респекты и уважухи»:
1. Из всего многообразия вариантов схемы в даташите, данный вариант самый безопасный и тяжелоубиваемый. Согласен с выбором автора.
2. Очень правильный вариант разводки платы. Тепло нужно отводить. С другой стороны, у меня 13,2В и 0,24А на выходе не нагрели чип даже на пару градусов. На ощуп!
Замечания о самом чипе.
Цена. Стоимость чипа 160 рублей (2,5$). Что самое интересное у Чипа и Дипа цена = цене у быстрого Али. Ценник конский. С учетом всей обвязки, конечный ценник запросто перевалит за 500р (7,7$)
На этом фоне PT4115 выглядит ЗНАЧИТЕЛЬНО интересней. Сам чип у бастрого Али стоит 10рублей. А из обвязки нужны только доиод, резистор и индуктивность.
Так же у данного чипа несколько ограничено применение. Фонарики. Авто. Настольные лампы.
Для светильника на потолок гораздо интересней HV9910, так как на потолке не важна гальваническая развязка с 220В, а данный чип на вход принимает до 400В.
Спасибо за здравую критику.
0,1 мкФ здесь всёже нужны (у нас здесь частота не 50 Гц).
С остальными пунктами согласен.
Добавлю, что PT4115 при токе 1А имеет КПД примерно 80% или меньше.
LM3406 при токе 1А кпд выше 90%.
Также есть вариант использовать LM3406HV при питающем напряжении до 75 вольт. Если требуется зажечь большую гирлянду из светодиодов. PT4115 так не умеет.
Источник