Модель радиоуправляемого катера своими руками часть 1

Как сделать своими руками простые радиоуправляемые катера с фото, видео и пошаговой инструкцией

Теория

Модель подводной лодки строится по тем же принципам, что и настоящая. В центре находится «прочный» водоНЕпроницаемый корпус, внутри которого скрыты все органы управления и электроника. Снаружу он окружен «легким» проницаемым корпусом, служащим для обтекания и красивого внешнего вида. Наша модель будет состоять только из прочного корпуса.

На скорости подводная лодка может погружаться за счет рулей глубины, а в статическом положении только с помощью балластной цистерны. Как это работает? При плавании на поверхности масса лодки чуть меньше массы объема вытесненной воды (закон Архимеда). Т.е. если лодка имеет объем 3л, то ее масса должна быть чуть меньше 3кг.

Теоретические расчеты погружения модели подводной лодки.

При строительстве есть 3 основные проблемы. Они вполне независимы и могут решаться отдельно.

  • радио-аппаратура (2.4 ГГц не работают под водой)
  • герметизация — корпус, вал двигателя и тяги рулей
  • балластная цистерна

Изготовление радиоуправляемого катера для прикормки рыбы

Такому радиоуправляемому грузовому кораблю скорость не нужна, поэтому об обводах можно и не задумываться. Главное – вместительность, грузоподъемность и устойчивость.

Вышеперечисленным требованиям хорошо подходит такой тип судна, как катамаран. От этого и будем отталкиваться.

Посмотрите наброски корпуса в 3-х мерном редакторе. Именно так выглядит неприхотливый катер для завоза прикормки. Этот катер будет иметь 2 мотора крутящие водометные движетели, разворот осуществляется за счет реверса тяги двигателей. Это позволяет рыбацкому радиоуправляемому кораблю разворачиваться практически на месте.

Корпус корабля изготавливается из чего угодно. Можно использовать фанеру и затем оклеить ее стеклотканью на эпоксидной смоле, но лучше использовать ПХВ или пластик для изготовления рекламных стендов. Хорошо подходит и коропласт.

Пластики не гниют, не требуют пропитки и полной оклейки корпуса стеклотканью.

Клеится корпус встык, а места соединения проклеиваются снаружи полоской ткани, это можно сделать в последний момент перед покраской.

По верху катера делается мощный силовой каркас из алюминиевого профиля. Это позволяет распределить нагрузку на весь корпус и приделать удобную ручку для переноски.

Носовые отсеки заливаются монтажной пеной, то же можно сделать с кормовыми отсеками после установки дейвудной трубки. Это приидаст кораблю непотопляемость, так как пена гораздо легче воды.

Водометный движетель весьма прост в изготовлении – это водный винт находящийся в кольцевой трубке и канал подачи воды закрытый решеткой. Такое решение позволяет уберечь винт от наматывания водорослей или снастей.

Для того, что бы вода не поступала внутрь судна необходимо установить и .

Стоимость дейвудной трубы 200 руб, вала с винтом 160, мотор стоит 600 рублей. Итого 960 руб. Всего этого потребуется по 2 штуки.

Можно пойти другим путем и поставить . Стоимость одного такого двигателя в сборе 2700 рублей, но, зато в нем все уже установлено и даже сделан подвод воды на радиатор охлаждения двигателя. Впрочем, для тихоходного катера подвоза приманки это не является необходимостью.

Для моторов потребуются регуляторы, берем . Стоимость 490 рублей. Имеет радиатор водяного охлаждения, реверс хода (это необходимо для разворотов на водометных движетелях).

Регуляторов так же требуется 2 штуки, так что еще 900 рублей и получается 1860.

Для открывания коробок с приманками потребуется 1 или 2 сервомашинки. 2 – если делать независимое открытие каждого отсека. Да и установить по сервомашинке на отсек проще.

Сервы берем недорогие в пыле-влагозащищенном корпусе, прекрасно подойдут, усилие на валу у них 3.5 кг, стоимость 145 руб. Итого 2150.

Балластная цистерна

Обычно это самая сложная часть подводной лодки. Но мы сделаем ее просто — воспользуемся микронасосом. Точнее перистальтическим микронасосом — он сам держит давление и не требует дополнительных клапанов. Сам насос способен развивать давление в 1 атмосферу, это значит он сможет прокачать цистерну на глубине до 10 метров. Управляется насос так же как обычным электромотором — регулятор хода или серва с микро-переключателями.

Есть вариант наполнять резиновый шарик, но он может лопнуть. Воспользуемся шприцом на 150 мл, называется шприц-Жане. Насос сам двигает поршень. Позже можно повесить датчики и контролировать объем поступившей воды.

Оригинальная силиконовая трубка в насосе 2.54мм, поменял на 46мм. В итоге пропускная способность увеличилась в 1.5 раза. Мотор расчитан на 6 вольт, подаю 12. Мотор немного нагревается, но не критично. Итоговая скорость 100мл за 20 сек.

Читайте также:  Консоль для полки деревянная своими руками

Аккумулятор и зарядное устройство

Не дорогой компьютеризированный зарядник позволяет заряжаться прямо от автомобильного аккумулятора. Стоит 680 рублей.

Аккумуляторы берем LiPo – это лучшее что можно найти на рынке модельных товаров.

Кладем в корзину 2 аккумулятора по 380 рублей, итого цена стала 5710.

Можно не скупиться и взять топовые, 2 штуки по 1150 рублей и общая цена будет 8150 рублей, но, так как рыбалка не каждый день, то дешевле раз в 3-4 года менять дешевые.

Для подсоединения аккумуляторов к регуляторам берем разъемы , это прибавит 160 рублей.

А вот видео как ходит самодельный катер для завоза приманки по озеру.

Про подключение всей электроники я расскажу в отдельной статье, а пока, давайте подобьем итоги.

Компоновка

Лодка имеет размеры 60см длина и 7,5см диаметр. Внутренний диаметр 71мм. Заглушки заходят на 2.5см каждая.

Внутри корпус поделен на «отсеки».

  • 1 — аккумулятор и приемник
  • 2 — цистерна
  • 3 — насос
  • 4 — сервы и регуляторы хода
  • 5 — главный мотор

Цистерна должна находиться по середине, чтобы лодка погружалась горизонтально (не было дифферента).

Элеметны крепления изготовлены из листового пористого ПВХ толщиной 5мм. Затем они стягиваются на железных шпильках, расположенных вдоль корпуса. Заднюю заглушку тоже следует закрепить на шпильках, чтобы обеспечить жесткоть узла с мотором и тягами рулей.

Изначально для управления мотором и насосом использовались регуляторы хода. Но реверс у них на много медленнее прямого вращения, что не удобно для насоса.
Во время испытания я не ставил отдельную схему питания UBEC и использовал встроенный BEC на 1 ампер. Т.к. мне пришла бракованная серва, которая заклинивала, в этот момент ток подскакивал и палил весь регулятор.

Мотор 550-ой серии избыточен для модели такого размера, можно поставить меньше. Крепится он шурупами на специальный кронштеин к задней заглушке. Соединение с валом через латунную муфту.

Так же стоит поставить модули Fail-safe на каналы насоса и двигателя. Двигатель настраивается на выключение, а насос на продувку цистерны.

Все чертежи на отдельной странице.

Сколько стоит построить катер для завоза прикормки

Итак, окончательная цена оборудования составляет 5 870 рублей.

Много это или мало?

Продающиеся в магазинах катера для завоза приманки стоят около 30 000 рублей. При этом на них используются коллекторные двигатели (20-30 поездок по воде и надо менять щетки двигателей или заменять движки) и устаревшая аппаратура на FM диапазоне (подвержена помехам, вы можете потерять управление катером).

Обычно, через полгода использования покупного катера для завоза прикормки его начинают переделывать – менять двигатели на бесколлекторый вариант (цену смотрите выше в статье), вместе с двигателем и регуляторы придется поменять на бесколлекторный вариант.

Передатчик и приемник так же требуют замены – ставят Turnigy 9x, она работает в помехозащищеном диапазоне 2.4 гигагерца.

Свинцовый аккумулятор за зиму теряет свои характеристики, если конечно его не разряжать и заряжать пару раз в месяц – но кто это делает? Так что по совету бывалых аккумулятор меняют на LiPo, они не подвержены таким явлениям, и покупают к ним зарядное устройство.

Фактически, от купленного катера остается только корпус и пара сервомашинок для открытия люков с приманкой.

Вы готовы отдать 30 тысяч рублей за пару сервомашинок ценой менее 300 рублей и корпус который делается за пару выходных?

Вот и получается, что сделать катер для завоза приманки своими руками гораздо выгоднее!

В догонку — а можно купить дешевый катер-игрушку за 2-3 тр, добавить к нему попловки по бокам (сделать из пенопласта и обтянуть тюлью на аквалаке, стеклоканью на жпоксидке или покрасить автоэмалью) и завозить на нем. Открывать отсеки кормушек можно с помощью рывка прочной ники или лески с земли — это самый дешевый вариант! 🙂

— Делаем квадрокоптер из линеек.
— Изготовление катера для прикормки своими руками.
— Изготовление квадрокоптера из подручных материалов.
— Делаем модель радиоуправляемой яхты за один вечер.
— Как сделать простую радиоуправляемую модель самолета.
— В помощь рыбаку.
— из такого конструткора можно собирать самодельные радиоуправляемые модели автомобилей.

Все Сам и своими руками

Балансировка

Объем надводной части должен быть меньше объема цистерны

Он может быть любой массы, лишь бы общая оставалась 2.8 кг. Поэтому надводные элементы делают из меди или тонких пластиков.

Балансировка осуществлуяется в 2 положениях:

    Надводное — Двигая/добавляя грузы и приклеивая пенопласт в подводную часть, добиваемся нулевого дифферента. Важно на этом этапе крепить пенопласт только ниже ватерлинии.

Погруженное — добавляем пенопласт выше ватерлинии и добиваемся горизонта.

Источник

Сайт про изобретения своими руками

МозгоЧины

Сайт про изобретения своими руками

Как сделать RC катер с опцией автопилота — часть 1

Как сделать RC катер с опцией автопилота — часть 1

Приветствую, мозгочины! Сегодня расскажу вам, как я своими руками создал Arduino-поделку — радиоуправляемый катер с опцией автопилота.

Читайте также:  Мозаика своими руками мастер класс для начинающих

По сути, это мозгоруководство о создании автопилота на микроконтроллере Arduino, который можно установить в любую модель, тем самым превратив ее в радиоуправляемую поделку, даже не просто поделку, а автономного дрона. На сборку данной мозгоподелки меня вдохновили такие робо-катера как UBC Sailbot и Scout, который кстати, совершил успешный трансатлантический рейс.

Весь процесс создания катера с автопилотом занял у меня более года, и за это время я приобрел много знаний по теории автопилотирования и схемотехники, и думаю, что в один прекрасный день я применю их на настоящем катере моего отца.

Окончательная, завершенная версия катера с автопилотом основывается на решениях трех прототипов, первый из которых самый простой по схеме и коду, остальные более доработанные. Финальный катер представляет собой полнофункциональную радиоуправляемую модель, которая успешно плавает по глади пруда, что я постарался отобразить на фото. Эта версия хотя и окончательная, но может быть доработана и усовершенствована, как с точки зрения кода, лодку нужно научить следовать маршруту, а не просто от точки к точке, так и с точки зрения электроники, можно поставить акселерометр, чтобы он компенсировал наклон от компаса.

Шаг 1: Видеопрезентация

Небольшое видео обозначит направление этого мозгопроекта:

Шаг 2: Прототип 1

Первый катер, то есть прототип 1, был самый простой по исполнению и должен был уметь:

  • считывать GPS-координаты своего положения
  • считывать азимут с компаса
  • управлять сервоприводом руля
  • использовать руль для следования курсу

А так же на нем я тестировал формулы маневрирования для создания действующего автопилота. Основой прототипа 1 был микроконтроллер Arduino Uno, в финальной версии я использовал ATmega328.

Чтобы получать данные с компаса я использовал HMC5883L, который легко подключается к микроконтроллеру через I2C. Как именно он устанавливается и как с ним работать хорошо описано здесь и здесь.

Управление сервоприводом руля

Контролировать сервопривод руля с помощью Arduino очень легко, но если только вы не используете библиотеку SoftwareSerial, которая нужна для TinyGPS ++, и которая конфликтует с одним таймеров Arduino! Запущенная SoftwareSerial мешает работе любого сервопривода использующего стандартную библиотеку, и решением данного мозгоконфликта является использование библиотеки PWM Servo library.

Формулы алгоритма автопилотирования

В прототипе 1 я применил несколько функций, которые позднее станут критичными. Эти функции используют формулу Хаверсина для расчета таких параметров как расстояние между двумя точками, направления от одной точки к следующей и реальный азимут по данным компаса. Более подробно об этих формулах в этой статье.

Компоненты первого прототипа я разместил на деревянном каркасе (см. фото), и теперь, зная положение этого каркаса-автопилота и сравнивая с заданным, можно поворачивать руль и сохранять заданный маршрут. Это будет полезно в дальнейшем для навигации по GPS-координатам.

Шаг 3: Прототип 2

Довольный результатами первой поделки я решил создать прототип 2 с программными доработками автопилота. Целями для второй самоделки были:

  • плавание по заданным GPS-кооддинатам
  • работа автопилота от аккумулятора
  • тестирование и запись данных автопилота

Конструкция автопилота также претерпела некоторые изменения — была добавлена макетная плата ProtoSheild, на которую я установил сам Arduino и компас. Все компоненты смонтировал на фанерное основание и “упаковал” в пластиковый контейнер.

В этот же контейнер я попытался добавить приемник дистанционного управления, но безуспешно из-за нехватки свободного места.

Плавание по заданным GPS-кооддинатам

Код для Arduino я написал таким образом, чтобы он поворачивал руль по направлению к следующей точке заданного маршрута: используя GPS-координаты для вычисления соотношений последующих точек и сравнивая их с компасом, вычисляется поворот руля. Если вычисленное значение правее, на 90 градусов, то руль повернется на 60 градусов. Если вычисленное значение левее, на 270 градусов, то руль повернется на 120 градусов. Если же значение находится между 330 и 30 градусами, то руль будет поворачиваться экспоненциально сохраняя положение прямо.

Все это будет происходить в цикле, примерно так (этот код обобщенный):

Пояснение кода таково: если расстояние между катером и следующей точкой более 5 метров, то складывая азимут катера и азимут следующей точки, получается действительный азимут, оба азимута посылаются функции the RudderTurn function, которая вычисляет нужный угол поворота и соответственно поворачивает мозгоруль.

Запитать Arduino от аккумулятора довольно просто. Для этого на микроконтроллере есть контакт Vin, и на него можно подать до 20В постоянного тока. У меня была литиевая батарея на 12.6В, к которой я припаял разъем и подключил ее к контакту Vin на Arduino.

Шаг 4: Тестирование прототипа 2

Для того чтобы проверить прототип в действии я установил два светодиода, первый из которых будет светиться когда зафиксируется GPS-координата, а второй, когда будет достигнута эта точка.

Пробы своего автопилота я проводил на местном поле. К своему ноутбуку я подключил автопилот и запустил последовательный монитор (часть программного обеспечения Arduino), который записывал GPS-координаты все время следования по заданным точкам. Я пользовался рулем который направлял меня к следующей точке, и я поворачивал, словно это был мозгокатер.

Читайте также:  Питание для юсб хаба своими руками

На представленных фото обозначен маршрут тестов. Если я оказывался ближе чем 5 метров к нужной точке, то автопилот переключался и начинал навигацию к следующей точке. В процессе этих тестов код поделки претерпел довольно много незначительных изменений.

Для конвертации последовательного текста в путь Google Earth, я импортировал текст в Excel, сохранив файл и далее следуя указаниям Earthpoint, преобразовывал файл в формат KML.

Шаг 5: Первое судно

Судно, которое я сделал первым для этого проекта, было больше экспериментом, чем действующим прототипом. Просто я хотел посмотреть, смогу ли я создать функционирующий аэроглиссер самостоятельно или придется покупать.

Шаг 6: Модифицированный катер

А теперь снова вернемся к чертежам катера! На известном онлайн-ресурсе я купил новый катер. В комплект к нему входили никель-металл-гидридный (Ni-MH) аккумулятор на 7.4В, зарядное устройство, передатчик и плата приемника. С передатчиком возникли небольшие проблемы — нужно было найти 12 батареек АА, и я остался разочарованным не работающим катером. Но, для проекта это не критично и я продолжил.

Я выпаял два Н-канальных MOSFET-транзистора из цепи приемника, они пригодятся позднее. После этого обрезал все провода и загерметизировал горячим клеем все щели и трещинки, которые нашел в корпусе катера.

Два двигателя катера имели сложную систему охлаждения — очень шумный пропеллер, который нагнетал воздух на двигатели, еще на моторах стояли шунтирующие конденсаторы, и оба этих момента работали в мою пользу. А вот для маленького переключателя на верхней стороне мозгокатера я не нашел более достойного применения.

Далее встал вопрос безопасного размещения прототипа и для его решения я использовал небольшую досочку к низу которой, в районе двигателей, приклеил деревянную палочку, а еще к доске и к корпусу катера приклеил застежку-липучку, удерживающей силы которой хватит для “спасения” автопилота при переворачивании катера.

Шаг 7: Прототип 3

Одним из недостатков двух предыдущих прототипов была медленная скорость обновления, то есть скорости реакции. Руль недостаточно быстро реагировал на изменение маршрута и этот момент был включен в список целей и задач нового прототипа:

  • увеличение скорости реакции автопилота
  • добавление контроллеров моторов
  • программирование совместной работы двигателей
  • установка приемника

Увеличение скорости реакции

Единственный минус библиотеки TinyGPS ++ это медленность. Проблема в том, что Arduino Uno не может выполнять две вещи одновременно (в принципе может, на деле — нет). Простым решением может стать еще один микроконтроллер Arduino, который с помощью библиотеки TinyGPS ++ будет обрабатывать данные GPS, а затем отправлять параметры на первый микроконтроллер автопилота. Но у меня не было еще одного Arduino.

Arduino Uno это, по существу, чип ATmega328 и еще несколько дополнительных компонентов. Зная это можно создать свой собственный Arduino на макетной плате. И для этого есть хорошее мозгоруководство.

К собранному самостоятельно Arduino, так же как и “старый” модуль, я подключил новый GPS-модуль Ublox NEO-6M. Для программинга самодельного Arduino использовал библиотеку Bill Porter’s Easy Transfer library, а “связал” оба микроконтроллера одиночным проводом, то есть односторонним последовательным соединением. Этот самодельный Arduino повысил скорость реакции автопилота с 4 Гц до 50 Гц!

Добавление контроллеров двигателей

Мне очень понравилась плата ProtoSheild для Arduino Uno, которую я использовал, но оказалось, что она не имеет достаточного пространства для крепления двух контроллеров двигателей. Поэтому я убрал эту мини-плату, и поставил другую, больших размеров.

Электроцепь контроллеров двигателей проста: МОП-транзистор (MOSFET), с помощью ШИМ, контролирует среднее напряжение, идущее к двигателю. Резистор 1кОм ограничивает силу тока чтобы не перегорел Arduino, а резистор 10кОм удерживает MOSFET закрытым, когда отсутствует входящий сигнал.

Программирование взаимодействия моторов

У данного катера отсутствует штурвал, то есть руль, и вместо него для управления используется два мотора. Их то я и решил задействовать, а не устанавливать сервомотор для управления. Контроллеры моторов я уже собрал, осталось только запрограммировать Arduino для управления этими контроллерами.

Программирование я начал с написания макета программы в начал с Visual Studio. По мере написания я отладил код, и в конце концов добился взаимодействия двигателей. Оставалось только переделать код с VS на Arduino, но это не трудно, так как языки C # и C ++ очень близки.

Установка приемника радиоуправления

На прототип я смонтировал приемник ДУ для ручного управления самоделкой. Это тоже довольно просто сделать, нужно лишь считывать входящие значения функцией pulseIn и “научить” реагировать автопилот на эти значения.

Прототип автопилота я установил внутри катера, подключил двигатели к контроллерам и запрограммировал маршрут плавания по местном пруду. После прохождения трех точек, поделка перестала работать и “сгасла”. Оказалось, что высокое напряжение от аккумулятора (12 В) “спалило” регуляторы напряжения 5 В.

( Специально для МозгоЧинов #Boat-Autopilot

Источник

Оцените статью
Своими руками