Мини рельсотрон своими руками

Мини рельсотрон своими руками

Как сделать pельсотpон

Как сделать pельсотpон

Наиболее простой пример электромагнитной ускоряющей системы-так называемый «рельсотрон», хорошо известный физикам-экспериментаторам уже десятки лет (1.20].

Идея рельсотрона (или электромагнитной пушки-«рейлгана») довольно проста (рис. 1). К двум параллельным (или коаксиальным) токонесущим шинам-рельсам прикладывается напряжение от источника питания. Если замкнуть контур, поместив на шины, например, подвижную тележку, проводящую ток и обладающую хорошими контактами с шинами, то возникающий электрический ток индуцирует магнитное поле. Это поле создает давление P, равное H**2/8Pi, которое стремится раздвинуть проводники,образующие контур. Массивные шины-рельсы закреплены. Единственным подвижным элементом является тележка, которая под действием давления начинает двигаться по рельсам так, чтоббы объем, занимаемый магнитны полем, возрастал, т.е . по направлению от источника питания. Ускорение тележки будет продолжаться, пока действует магнитное давление. Предельная скорость, до которой разгонится тележка, определяется соотношением

где S-длина разгона, a-эффективное ускорение. Для его оценки вычислим давление магнитного поля. Положим H = 10**5 Гс. Тогда P=4х10**8 дин/см**2 = 400 атм. Пусть эффективная толщина тележки равна 10 г/см**2, тогда ускорение составит 4×10**5 м/с**2 или 4×10**4g. При таких условиях скорость 10 км/с достигается на длине 125 м, а скорость 20 км/с-на рость 20 км/с,-то им соответствует длина разгона 200 м. Таковы типичные линейные размеры электромагнитных ускорителей. Время разгона равно v/а, что составляет для типичных значений параметров ускорителей сотые доли секунды. Заметим, что от полной массы тележки приведенные выше значения не зависят; полная масса сказывается только на суммарных энергозатратах.

Совершенствование электромагнитных пушек направлено на повышение конечной скорости. Увеличение линейных размеров до километровых масштабов вряд ли возможно. Для увеличения ускорения необходимо либо повышение магнитного давления, либо уменьшение эффективной массы снаряда.

Увеличение давления магнитного поля не может быть безграничным-при давлениях порядка 1000 атмосфер (т.е. 150-160 кгаусс) достигается порог механической устойчивости. Подобную систему очень длинных шин, распираемых внутренним давлением, трудно сделать жесткой и прочной. Если механическую прочность еще можно попытаться обеспечить увеличением м акое увеличение массы не поможет против потери тепловой стойкости.

При длительности токового импульса порядка сотых долей секунды толщина скин-слоя в меди составляет 1 см. Магнитному полю 120 кгаусс в этом случае соответствует плотность тока 100 кА/см^. Это приводит к тепловым потерям в материале порядка 400 Дж/см^ при длительности импульса тока 20 мс (медь нагревается до 120°С). При этом соответствующая пло няя в точности равна кинетической энергии снаряда. Таким образом, КПД рельсотрона равен 1/3. С учетом того, что КПД источника электроэнергии не превышает ЗО%, полный КПД оказывается около 10%, как уже упоминалось выше.

Тепловой нагрев шин ограничивает скорострельность системы, а любое тепловое повреждение ухудшает воспроизводимость характеристик выстрелов.

Желательность уменьшения массы снаряда с целью увеличения его конечной скорости вступает в противоречие с необходимостью иметь перехватчики с довольно сложной системой самонаведения, масса которых не может быть уменьшена беспрепятственно.

Еще одним следствием больших токов, о которых речь шла выше, является то, что контактная тележка (сечение которой меньше сечения шин) должна расплавиться, испариться и частично превратиться в плазму. Такое плазменное облако становится своеобразным поршнем для снаряда, который должен быть электрически изолирован от плазмы. В связи с этим в пос го облака с шинами.

Кроме того, существует проблема завершения разгона. Чтобы снаряд оторвался от плазменного поршня, последний должен исчезнуть или замедлиться. В рассмотренной простой схеме замедление невозможно, а для исчезновения плазменного поршня требуется разрыв электрической цепи.

Читайте также:  Обслуживание киа спортейдж своими руками

Разрыв сильноточной электрической цепи, как известно, приводит к большим перенапряжениям и пробоям. В результате снаряд может получить дополнительный случайный импульс, обладающий перпендикулярной составляющей, что резко ухудшает угловую точность стрельбы.

Наконец, само движение плазменного поршня подвержено действию многочисленных плазменных неустойчивостей, которые трудно предусмотреть и устранить заранее.

Возможен бесконтактный способ ускорения, основанный на использовании, например, разновидности индукционного линейного мотора. В таком моторе замкнутый виток выталкивается в область с меньшим значением магнитного поля. Виток движется вдоль осевой линии цепочки внешних катушек, на которые поочередно в фазе с движением витка подается напряжение. ельное количество вещества (до сотни кг за выстрел) и обеспечивал бы при этом высокую угловую точность (порядка микрорадиана). Недостатком такой системы является сравнительно небольшое эффективное ускорение (100g) и, следовательно, значительные линейные размеры (десятки км!).

И все же самой, пожалуй, серьезной проблемой для электромагнитных систем оказывается энергетика. Типичными источниками энергии для электромагнитных систем в настоящее время являются униполярные генераторы (маховики) с энергоемкостью до 10 Дж/г (10 МДж/т) 4. Если от системы требуется высокая скорострельность, то энергия должна запасаться

Итак, электромагнитным системам (с использованием давления магнитного поля) свойственны два основных недостатка:

— значительные линейные размеры, что затрудняет перенацеливание (с учетом компенсации отдачи) и, следовательно, понижает скорострельность, а также увеличивает уязвимость;

— непомерно большая масса энергосистем.

Поэтому электромагнитные системы, ориентированные пока что в основном на достижение «сверхскоростей», на современном уровне развития представляются малоподходящими для того, чтобы стать главным средством для запуска самонаводящихся перехватчиков (нужно учесть еще огромные перегрузки, свойственные таким системам; они могут затруднить создание

Целесообразность применения индивидуальных баллистических перехватчиков такого типа, даже обладающих весьма высокой скоростью, пока представляется сомнительной, по крайней мере для больших дальностей поражения в связи с неопределенностью угловой точности стрельбы.

Источник

Самый мощный созданный в домашних условиях рейлган

Мы уже неоднократно видели разнообразные варианты рейлгана ( рельсотрон ), которые были созданы энтузиастами в домашних условиях. Они обычно не слишком мощные и не являются летальным оружием, более серьезные наработки в этом плане принадлежат государственным структурам. Энтузиасты своими силами собрали собственный рельсовый ускоритель масс, который на данный момент является самым мощным в своем классе. Устройство получилось большим: весит около 113 кг.

Во время выстрела высвобождается 27 000 джоулей энергии. Изначально алюминиевый снаряд весом 22 г разгоняется пневматической системой до 50 миль в час, после чего попадает между двух параллельных электронов (рельс), где дальше получает разгон с помощью электромагнитного импульса. Уже в этот момент снаряд начинает плавиться, что уменьшает силу трения.

Для работы рельсотрона используется 65 конденсаторов по 6000 микрофарад, которые питаются от 400 В источника. Создатели уже произвели кучу тестовых выстрелов, во время первого произошло отсоединение кабелей из-за ненадежного крепления:

Во время четвертого выстрела снаряд справился с дверью автомобиля:

Пятый тестовый запуск доказал летальность оружия. Выстрел был произведен в блок из баллистического желатина, который используется для моделирования мышечной ткани:

Больше тестовых запусков и деталей по созданию размещено на странице в imgur

Источник

Мини рельсотрон своими руками

Сообщение T1m » 14 апр 2017, 12:45

Картинка для привлечения внимания.

Итак, начать стоит с проблем обычного EM-оружия:

Пушка гаусса — теряется кпд на потери в катушках и надо городить системы рекуперации, иначе — кпд 2%. Лучший КПД любительских установок — 7%. Большие проблемы с коммутирующими элементами ( разве что ставить кирпичи cm300-cm600)

Читайте также:  Озеро для рыбалки своими руками

Рельсовая пушка — хороша всем, кроме сложности ПРАВИЛЬНОЙ реализации. Нужен предразгон снаряда. КПД доходит до 7-10% у любителей и до 25-30% у DARPA

Электротермическая — проста и относительно надежна. Не очень удобна в применении. Ствол нужен очень прочный, импульсные давления ОЧЕНЬ велики. КПД любителей — в районе 15-17%. КПД исследовательских — неизвестно (вероятно, засекречено).

Ну а теперь мой извращенный гибрид — ETR-пушка. Была создана в процессе попыток решить проблемы рельсотрона и электротермической пушки.

Конструкция пушки: 1 – оболочка ствола из текстолита; 2 – рельсы из нержавеющей стали; 3 – защитная оболочка из металла

Суть решения неожиданно проста — предварительный разгон снаряда в ET-режиме, далее как у рельсотрона с плазменным поршнем. Но главная проблема электротермической пушки — давление в стволе — тоже решена, вот то большое, в синей изоленте, нечто — насыщающийся дроссель, ограничивающий ток первую миллисекунду. Соответственно, тысячи атмосфер не наблюдается, да и меньше нагрузки на все компоненты.

Главная проблема стенда — ключ. Выключатель от таких токов помирает быстро, конденсаторы ведь импульсные, для фотовспышек. Вариант решения — сделать нормальный затвор и коммутировать цепь уже самим пыжом из фольги.Я ниосилил, кто захочет — сделает.
Заодно схема зарядного для банок:

Расчет ведется как для обратноходового преобразователя, с отраженным напряжением равным выходному ( конденсатор Cr подбирается под получившуюся индуктивность дросселя, по минимуму нагрева транзистора. Брать только высоковольтный, само собой разумеется.

Результат — скорость на выходе из дула около 980-1000 м/с у пластиковой пульки от игрушечного пистолета (масса — 0,13 грамм, измерялось довольно криво, но порядок чисел близок)

Источник

Мини рельсотрон своими руками

Как сделать pельсотpон

Как сделать pельсотpон

Наиболее простой пример электромагнитной ускоряющей системы-так называемый «рельсотрон», хорошо известный физикам-экспериментаторам уже десятки лет (1.20].

Идея рельсотрона (или электромагнитной пушки-«рейлгана») довольно проста (рис. 1). К двум параллельным (или коаксиальным) токонесущим шинам-рельсам прикладывается напряжение от источника питания. Если замкнуть контур, поместив на шины, например, подвижную тележку, проводящую ток и обладающую хорошими контактами с шинами, то возникающий электрический ток индуцирует магнитное поле. Это поле создает давление P, равное H**2/8Pi, которое стремится раздвинуть проводники,образующие контур. Массивные шины-рельсы закреплены. Единственным подвижным элементом является тележка, которая под действием давления начинает двигаться по рельсам так, чтоббы объем, занимаемый магнитны полем, возрастал, т.е . по направлению от источника питания. Ускорение тележки будет продолжаться, пока действует магнитное давление. Предельная скорость, до которой разгонится тележка, определяется соотношением

где S-длина разгона, a-эффективное ускорение. Для его оценки вычислим давление магнитного поля. Положим H = 10**5 Гс. Тогда P=4х10**8 дин/см**2 = 400 атм. Пусть эффективная толщина тележки равна 10 г/см**2, тогда ускорение составит 4×10**5 м/с**2 или 4×10**4g. При таких условиях скорость 10 км/с достигается на длине 125 м, а скорость 20 км/с-на рость 20 км/с,-то им соответствует длина разгона 200 м. Таковы типичные линейные размеры электромагнитных ускорителей. Время разгона равно v/а, что составляет для типичных значений параметров ускорителей сотые доли секунды. Заметим, что от полной массы тележки приведенные выше значения не зависят; полная масса сказывается только на суммарных энергозатратах.

Совершенствование электромагнитных пушек направлено на повышение конечной скорости. Увеличение линейных размеров до километровых масштабов вряд ли возможно. Для увеличения ускорения необходимо либо повышение магнитного давления, либо уменьшение эффективной массы снаряда.

Увеличение давления магнитного поля не может быть безграничным-при давлениях порядка 1000 атмосфер (т.е. 150-160 кгаусс) достигается порог механической устойчивости. Подобную систему очень длинных шин, распираемых внутренним давлением, трудно сделать жесткой и прочной. Если механическую прочность еще можно попытаться обеспечить увеличением м акое увеличение массы не поможет против потери тепловой стойкости.

Читайте также:  Освещение своими руками все

При длительности токового импульса порядка сотых долей секунды толщина скин-слоя в меди составляет 1 см. Магнитному полю 120 кгаусс в этом случае соответствует плотность тока 100 кА/см^. Это приводит к тепловым потерям в материале порядка 400 Дж/см^ при длительности импульса тока 20 мс (медь нагревается до 120°С). При этом соответствующая пло няя в точности равна кинетической энергии снаряда. Таким образом, КПД рельсотрона равен 1/3. С учетом того, что КПД источника электроэнергии не превышает ЗО%, полный КПД оказывается около 10%, как уже упоминалось выше.

Тепловой нагрев шин ограничивает скорострельность системы, а любое тепловое повреждение ухудшает воспроизводимость характеристик выстрелов.

Желательность уменьшения массы снаряда с целью увеличения его конечной скорости вступает в противоречие с необходимостью иметь перехватчики с довольно сложной системой самонаведения, масса которых не может быть уменьшена беспрепятственно.

Еще одним следствием больших токов, о которых речь шла выше, является то, что контактная тележка (сечение которой меньше сечения шин) должна расплавиться, испариться и частично превратиться в плазму. Такое плазменное облако становится своеобразным поршнем для снаряда, который должен быть электрически изолирован от плазмы. В связи с этим в пос го облака с шинами.

Кроме того, существует проблема завершения разгона. Чтобы снаряд оторвался от плазменного поршня, последний должен исчезнуть или замедлиться. В рассмотренной простой схеме замедление невозможно, а для исчезновения плазменного поршня требуется разрыв электрической цепи.

Разрыв сильноточной электрической цепи, как известно, приводит к большим перенапряжениям и пробоям. В результате снаряд может получить дополнительный случайный импульс, обладающий перпендикулярной составляющей, что резко ухудшает угловую точность стрельбы.

Наконец, само движение плазменного поршня подвержено действию многочисленных плазменных неустойчивостей, которые трудно предусмотреть и устранить заранее.

Возможен бесконтактный способ ускорения, основанный на использовании, например, разновидности индукционного линейного мотора. В таком моторе замкнутый виток выталкивается в область с меньшим значением магнитного поля. Виток движется вдоль осевой линии цепочки внешних катушек, на которые поочередно в фазе с движением витка подается напряжение. ельное количество вещества (до сотни кг за выстрел) и обеспечивал бы при этом высокую угловую точность (порядка микрорадиана). Недостатком такой системы является сравнительно небольшое эффективное ускорение (100g) и, следовательно, значительные линейные размеры (десятки км!).

И все же самой, пожалуй, серьезной проблемой для электромагнитных систем оказывается энергетика. Типичными источниками энергии для электромагнитных систем в настоящее время являются униполярные генераторы (маховики) с энергоемкостью до 10 Дж/г (10 МДж/т) 3. Если от системы требуется высокая скорострельность, то энергия должна запасаться

Итак, электромагнитным системам (с использованием давления магнитного поля) свойственны два основных недостатка:

— значительные линейные размеры, что затрудняет перенацеливание (с учетом компенсации отдачи) и, следовательно, понижает скорострельность, а также увеличивает уязвимость;

— непомерно большая масса энергосистем.

Поэтому электромагнитные системы, ориентированные пока что в основном на достижение «сверхскоростей», на современном уровне развития представляются малоподходящими для того, чтобы стать главным средством для запуска самонаводящихся перехватчиков (нужно учесть еще огромные перегрузки, свойственные таким системам; они могут затруднить создание

Целесообразность применения индивидуальных баллистических перехватчиков такого типа, даже обладающих весьма высокой скоростью, пока представляется сомнительной, по крайней мере для больших дальностей поражения в связи с неопределенностью угловой точности стрельбы.

Источник

Оцените статью
Своими руками