Усилитель для компьютерного микрофона с фантомным питанием.
Автор: Oleg Galizin, galizin@mail.ru Опубликовано 26.08.2010 Создано при помощи КотоРед. 2010
Завел я себе на компьютере такую программку как Skype. Но вот одна незадача: микрофон нужно держать около самого рта, что бы собеседник мог тебя хорошо слышать. Я решил, что не хватает чувствительности микрофона. И решил сделать усилитель усилитель.
Поиск в интернете дал десятки схем усилителей. Но всем им требовался отдельный источник питания. Мне же хотелось сделать усилитель без дополнительного источника, с питанием от самой звуковой карты. Что бы не нужно было менять батарейки или тянуть дополнительные провода. Прежде чем бороться с врагом, нужно знать его в лицо. Поэтому я накопал информации в интернете об устройстве микрофона: https://oldoctober.com/ru/microphone. Статья рассказывает, как сделать компьютерный микрофон своими руками. Заодно я позаимствовал и саму идею: незачем ломать готовое устройство для своих экспериментов, если можно сделать самому. Краткий пересказ статьи сводится к тому, что компьютерный микрофон — это электретный капсюль. Электретный капсюль — это, с электрической точки зрения, полевой транзистор с открытым истоком. Этот транзистор запитывается от звуковой карты через резистор, который одновременно является и преобразователем сигнального тока в напряжение. Два уточнения к статье. Во-первых, нет в капсюле резистора в стоковой цепи, сам видел, когда разобрал. Во-вторых, соединение резистора и конденсатора выполняется в кабеле, а не в звуковой карте. То есть один вывод служит для питания микрофона, а второй — для приема сигнала. То есть получается примерно вот такая схема
Здесь левая часть рисунка — это электретный капсюль (микрофон), правая — звуковая карта компьютера. Во многих источниках пишут, что питание микрофона осуществляется от напряжения 5В. Это неверно. В моей звуковой карте это напряжение было 2,65В. При замыкании вывода питания микрофона на землю ток составил около 1,5мА. То есть резистор имеет сопротивление около 1,7кОм. Вот от такого источника и требовалось питать усилитель. В результате экспериментов с microcap родилась вот такая схема.
Через резисторы R1, R2 осуществляется питание капсюля. Для предотвращения отрицательной обратной связи на частотах сигнала используется конденсатор C1. На капсюль подается напряжение питания равное падению напряжения на p-n переходе. Сигнал с капсюля выделяется на резисторе R1 и подается на базу транзистора VT1 для усиления. Транзистор включен по схеме с общим эмиттером с нагрузкой на резисторы R2 и резистор в звуковой карте. Отрицательная обратная связь по постоянному току через R1, R2 обеспечивает относительное постоянство тока через транзистор. Вся конструкция была собрана навесным монтажом прямо на микрофонном капсюле. По сравнению с микрофоном без усилителя сигнал увеличился примерно раз в 10 (22дБ).
Вся конструкция была обмотана сначала бумагой для изоляции, а потом фольгой для экранирования. Фольга имеет контакт с корпусом капсюля.
Upd.
Сделал также 2 транзисторный вариант. Он обладает повышенным коэффициентом усиления (30) и стабильностью. В принципе никто не мешает увеличить коэффициент усиления еще. Задается он отношением R1 к R2.
Вот фото готового изделия:
К файлам добавил печатку 2 транзисторного варианта.
Источник
Фантомное питание для микрофона: схема для повторения
Фантомное питание для микрофона: основы для повторения схемы
Фантомное питание для микрофона: капсюль электретного микрофона аналогичен тем, которые использовались в телефонах, кассетных магнитофонах и компьютерах. Этот элемент, фактически, является конденсатором с определенным фиксированным зарядом. Звуковое давление двигает диафрагму, вызывая изменения емкости. Это движение создает переменное выходное напряжение при очень высоком выходном сопротивлении источника. Сток внутреннего МОП-транзистора капсюля нагружен внешним резистором (Рисунок 1).
Низкий импеданс выхода
Резисторы R1 и R2 обеспечивают соответствующее выходное сопротивление и питание от источника 10 В. Основные характеристики этого простого капсюля превосходны, но для того, чтобы соответствовать профессиональным стандартам фантомного питания для микрофона, он требует дальнейшей обработки сигнала.
На выходе микрофона с фантомным питанием формируется низкоомный дифференциальный сигнал. Низкий импеданс выхода обеспечивает простой буфер на микросхеме IC1. Инвертор с единичным усилением на микросхеме IC2 получает питание от выхода IС1. Смещением для неинвертирующего входа IC2 служит хорошо отфильтрованное выходное напряжение микросхемы IC1. Сдвоенный усилитель IС1/IС2 был выбран из-за его низких шумов и низких искажений. R6 и R7 предназначены для защиты от емкости длинной линии, радиочастотных помех и бросков напряжения, возникающих при «горячем подключении» к источнику фантомного питания.
Для исключения попадания постоянного напряжения фантомного питания на линии аудиосигнала на выходах усилителя включены разделительные конденсаторы С2 и С3. Размах выходного дифференциального напряжения ограничен уровнем примерно 2 В пик-пик, что обусловлено неспособностью источника питания обеспечить выходные токи операционных усилителей при более высоких напряжениях. Однако этот уровень является достаточным, поскольку он соответствует пределам линейного диапазона капсюля.
Источник фантомного питания 48 В
Микрофоны с фантомным питанием получают энергию для своих активных цепей от приемного конца схемы через те же провода, по которым передается звуковой сигнал. Источник фантомного питания 48 В подключается к обеим сигнальным линиям через резисторы R10 и R11 сопротивлением 6.8 кОм. Такое подключение позволяет микрофону с низким выходным сопротивлением передавать дифференциальный сигнал переменного тока при относительно «мягкой» импедан-сной характеристике источника фантомного питания. Питание на микрофон подается с сигнальных линий через резисторы R8 и R9. Стабилитрон D1 регулирует питание микрофона и усилителя.
Кроме того, эти резисторы обеспечивают мягкую импедансную характеристику симметричной линии. Вы можете разместить микрофон в сотнях футов от источника фантомного питания и усилителя приемной стороны и при этом получить превосходные характеристики. На приемной стороне используется мало-шумящий инструментальный усилитель IC3, состоящий из трех внутренних операционных усилителей. Его конфигурация и лазерная подгонка номиналов резисторов обеспечивают отличный коэффициент подавления синфазных сигналов (CMR).
Подавление шумов и фона
Высокий CMR подавляет шумы и фон шины питания, имеющие одинаковые амплитуды на обеих сигнальных линиях. Хотя низкий шум (1нВ/√Гц) и не нужен для микрофонов с высоким уровнем выходного сигнала, подобных тем, который описан здесь, он необходим для профессиональных ленточных и электродинамических микрофонов со слабыми выходными сигналами. Микрофоны этих типов являются строго пассивными электромеханическими генераторами и не нуждаются в источнике питания.
Фантомное питание для микрофона получило такое название оттого, что эти типы микрофонов «подвешены» на 48 В. Выпускаемые электретные капсюли имеют различные размеры и физические конфигурации. В частности, они могут быть как всенаправленными, так и направленными (с кардиоидной диаграммой направленности). Направленные капсюли имеют сзади вентиляционное отверстие; для получения надлежащих характеристик их следует устанавливать так, чтобы обеспечить свободный доступ как спереди, так и сзади.
Фантомное питание для микрофона и директ бокса 48V
Источник
Лаборатория звуковой техники
музыкант, инженер, звукорежиссёр — всё в двух лицах!
Самый простой блок фантомного питания 48В
Многим, кто конструирует звуковую технику (в частности, предусилители) наверняка в какой-либо конструкции требовался блок фантомного питания. Помимо применения такого блока в составе конструкции (например, блока питания для микшерского пульта), реже этот блок может потребоваться и в виде самостоятельной конструкции. Так, например, музыканты, использующие конденсаторные микрофоны просили меня изготовить такой блок, да ещё и с соответствующим переходником для подключения микрофона к активной АС или микшеру без встроенного блока фантомного питания. В общем то, конструкция — проще некуда. Да, понадобится хорошая стабилизация и хорошая фильтрация помех, с чем, в общем-то, неплохо справляются линейные стабилизаторы вроде LM317. Единственная и самая важная проблема — где взять достаточное переменное напряжение (не менее 32В)? Трансформаторы более 24В, вроде бы, и не дефицит, но вещь весьма специфичная, которую не всегда окажется под рукой. Вот здесь на помощь приходит умножитель напряжения на конденсаторах и диодах. Схема давно известная и очень распространённая, слышал о ней, наверняка, почти каждый. А кто не слышал — Google в помощь 🙂 Не буду отдельно останавливаться на умножителе. Уточню лишь одну особенность — диодный умножитель нецелесообразно использовать на больших токах нагрузки. Но, поскольку стандартные потребителе фантомного питания сверхмаломощны, такое решение для них просто идеально.
Остановимся на умножителе на 4. Действительно, найти трансформатор на 12-15 вольт проще простого. Есть и ещё одна причина выбора именно умножителя на 4 — это наличие общей для входа и выхода точки, которая как раз является минусом. И это тоже является серьёзным преимуществом. Так, умножители, построенные по другим возможным схемам (в т.ч. с другими множителями), нужно запитывать от отдельной обмотки или трансформатора, как это показано на рисунке под вариантом I. Это обусловлено тем, что в распространённой схемотехнике минусовой выход преобразователя соединяется с нулевой точкой общего питания (общей массой), и объединение входа и выхода умножителя в этой общей точке, или — тем более — связь их через другую обмотку приведёт к его выходу из строя (пробою диодов). Данный же умножитель можно включать по схеме под вариантом II, а значит — существенно упростить конструкцию и сэкономить на трансформаторе.
Рассмотрим её чуть подробнее. C1 — C4 и VD1-VD4 в данном случае образуют умножитель напряжения на 4. После них мы предусмотрели двойную фильтрацию — чтобы снизить фон. Сначала идёт, по-сути, фильтр второго порядка на R1C5 и R2C6, затем уже активный фильтр/стабилизатор на LM317. И после микросхемы — обязательно — конденсатор C7, предотвращающий самовозбуждение схемы. В ранних модификациях схемы без этого конденсатора зачастую проявлялся сильный шум по питанию и мгновенно пропадал, если к выходу подключался конденсатор или нагрузка носила емкостной характер. Подстроечным резистором R5 задаётся выходное напряжение. Рекомендации по его настройке — в конце статьи. R3, R4 и R5 рекомендуем использовать мощные (0,25Вт, 0,5Вт), т.к. в некоторых случаях они будут нагреваться. Так же рекомендуем обратить внимание на VD6. Если схема питается от отдельного трансформатора (или отдельной обмотки) — необходимости в нём нет и его можно заменить на перемычку. Однако, если схема питается от одной из обмоток трансформатора двуполярного источника питания, либо от этой же обмотки запитан другой стабилизатор диод необходим для защиты от короткого замыкания диодного в цепи другого выпрямителя, подключенного к этой же обмотке, при соединении сигнальной земли. Почему может произойти это замыкание, способное привести к выходу из строя выпрямитель, и как эту проблему решает диод, показано на схеме ниже.
А вот уже модифицированная схема для использования блока питания, как отдельно стоящего устройства. Здесь предусмотрено стандартное подключение устройства, нуждающегося в фантомном питании. Оно подаётся через ограничивающие резисторы R6 и R7 на сигнальные контакты устройства (для стандартных конденсаторных микрофонов с XLR разъёмом это контакты 2 и 3, 1 — общий), а непосредственно сигнал через разделительные конденсаторы C8 и C9 подаётся на принимающее устройство (микшер, усилитель, звуковая карта).
Так же для вас готовая — разработанная и испытанная печатная плата. Макет — выше, ниже найдёте ссылку на файл в формате Sprint Layout и Gerber если захотите самостоятельно изготовить платы. Вы так же можете заказать у нас готовую заводскую печатную плату и даже собранное устройство . Для этого свяжитесь с нами через форму для связи!