Мачта для ветрогенератора без растяжек своими руками

Установка мачты и монтаж ветрогенератора

Наконец была установлена мачта высотой 14,5м. Поднимали в шестером с помощью расстяжек, так-же в помощь пошла стремянка, которую подтставляли под мачту во время подъема. Мачта сварена из трубы, а чтобы по ней залазить были приварены штырьки. Так-же на верху предусмотренна небольшая площадка чтобы можно было относительно удобно стоять и обслуживать ветрогенератор.

Ветрогенератор монтировали по частям, подовая детали по наклонному тросу , который был перекинут через блочки, закрепленные на мачте и внизу. Сначало было страшновато так-как мачта покачивалась и казалось очень высоко, но когда дело дошло до монтажа хвоста страх улитучился и на плащадке стояли уже как на земле, а помошник бегал по мачте вниз и вверх как по стремянке не смотря на высоту более 10-ти метров.

Ветрогенератор наконец поднят на ветер и пришло время подключать приборы АКБ и смотреть что дает ветрогенератор и как вообще работает. Первым делом для проверки подсоеденили к ветряку автомобильный аккумулятор и стали смотреть за процессом зарядки. Когда напряжение поднималось до 15-ти вольт было решино срочно побыстрому споять балластный регулятор, а то как-то аккумулятор портить не охота перезарядом.

Потом решили проверить свою электронику и подсоеденили инвертор, с помощью которого запитали телевизор, а к нему камеру подключили, которая снаружи снимает ветрогенератор. Получился так-сказать пункт наблюдения за ветрогенератором не выходя из дома, и все приборы перед глазами.

Эти все дни после подъема ветрогенератора так и небыло настоящего ветра, лишь изредка в пиках пару секунд анемометр показывал 7-8м/с, при этом ток зарядки был более 10 Ампер. Было замечено что хвост ветрогенератора даже не пытается складываться. Хвост было решино облегчить и немного переделать. После переделки хваст уже начинал складываться при ветре начиная с 6-тим/с. Это слишком рано и было решино подтянуть пружину придерживающую хвост.

Наконец подул ветерок по сильнее, теперь все измерительные приборы ожили и чато паказывали силу ветра 10-12м/с, ток зарядки переваливал отметку в 20Ампер. Временами ветрогенератор очень сильно раскручивался, мачта начинала изгибаться и ходить ходуном. При этом хвост только делал попытки складыааться. Было решино экстренно остановить винт, но короткое замыкание генератора не остонавливало винт, и он на порывах снова набирал обороты.

Пришлось залезать на мачту и пытаться затормозить винт вручную, но руками не удовалось этого сделать. В итоге с опаской смотря на взлетающий винт ветрогенератора переждали сильный ветер, и когда наступило затишье после осмотра ветрогенератора обнаружилрсь что крепления лопастей погнулись и по этому наступил дисбаланс и раскачивание мачты.

Ниже фото того что натворил ветер с винтом. На первом фото ступица в первоначальном виде, а далее уже после сильного ветра. Как козалось крепление лопастей было сделано с запасом прочности, но это оказалось совсем не так. Выяснились некоторые ошибки в конструкции. Оказывается нельзя было отклонять лопасти вперед относительно плоскости вращения винта, а они были специально вынесены вперед на 7 градусов чтобы при прогибании винта под ветровой нагрузкой лопасти не побились о мачту. При вращении, особенно на больших скоростях возникают большие центробежные силы, которые пытается выпрямить винт в плоскость вращения, плюс давление ветра, вот и результат, прогнутые креплания лопастей.

Аказывается эти силы намного сильнее чем ожидалось, а ведь винт , точнее лопасти проверялись на изгиб с помощью пружинных весов, и изгиб составил 20см при усилии 20 кг, и усилие прилагалось не на кончике лопасти а на радиусе 75 см. На фото ниже крепление лопастей в первоначальном виде, а фото сверху на мачте показывает как прогнулись крепления лопастей. И третье фото проверки усилия на изгиб лопастей.

С учетом всех этих последствий винт был снят подвергся анализу и чтобы подрбное предотвратить его пришлось немного переделать и усилить. Продолжение на следующей странице.
Страница 1 — Ветрогенератор из асинхронного двигателя начало
Страница 2 — Испытательный стенд, пареметры генератора.
Страница 3 — Изготовление лопастей и балансировка винта.
вы на четвертой странице
Страница 5 — Доводка ветрогенератора, электроника, акб.

Источник

Сооружение мачты для ветрогенератора: обзор конструкций, выбор и сборка самодельных ветряков

Обновлено: 8 января 2021

Ветрогенератор не может полноценно функционировать на малых высотах. Даже вертикальные конструкции, не требовательные к направлению ветра, нуждаются в некотором подъеме над поверхностью земли для размещения в более выгодных условиях.

Горизонтальные конструкции нуждаются в опорной конструкции большой высоты — считается оптимальным расположение ветряка над верхушками близлежащих построек или крон деревьев не менее, чем в 10 метрах. То есть, если неподалеку (по правилам — не менее 30 м) есть деревья высотой 10 м, то высота мачты должна составлять 20 м.

Требования достаточно просты, но соблюдать их сложно в силу технических трудностей, возникающих при создании и установке конструкций подобных размеров.

Мачта ветрогенератора: обзор конструкций

Существует несколько разновидностей мачт для ветрогенераторов:

  • растяжная. Используются металлические трубы относительно небольшого диаметра. В качестве поддерживающих элементов применяются растяжки из стального троса, присоединенного к конструкции на одном или нескольких уровнях.
  • сварная. Состоит из отдельных элементов, сваренных в единую систему. Обычно делают трехгранную ферму из продольных труб с наклонными поперечными элементами. Конструкция трудоемкая, способна шуметь от ветра, но вполне надежная и прочная.
  • коническая. Это сооружение создается из труб большого диаметра, уменьшающегося к вершине. При создании такой конструкции придется немало потрудиться, работы непростые и требуют большого количества материалов. Существуют секционные варианты конических мачт, собранные наподобие сварных, но с разным сечением у основания и вершины.
  • гидравлическая. Наиболее дорогостоящая конструкция, способная самостоятельно подниматься и опускаться при участии гидравлического механизма. Для обслуживания или ремонта ветряка такой вариант самый предпочтительный, но высокая стоимость ограничивает использование на практике.
Читайте также:  Крепление тетивы лестница своими руками

Следует учитывать необходимость размещения мачты на должном расстоянии от построек. Кроме того, потребуется надежный фундамент, особенно для тяжелых и высоких мачт. Он представляет собой мощную бетонную подушку с залитыми анкерами, удерживающими сооружение в вертикальном положении.

Создание своими руками любого из этих вариантов потребует предварительного расчета, точности и тщательности выполнения работ.

Какую выбираем?

Выбор конструкции мачты — вопрос, в первую очередь обусловленный финансовыми и техническими возможностями владельца. Прежде всего, необходимо точно выяснить, не имеется ли ограничений на высоту сооружений для данного региона, иначе можно заработать неприятные разговоры с представителями администрации и штрафные санкции.

Наиболее правильным подходом станет предварительный расчет количества материалов, необходимых для сборки мачты. Понадобится также изучить метеорологическую обстановку в регионе, скорость преобладающих ветров, направление, наличие ураганов или шквалистых порывов или делать защиту ветрогенератора от сильного ветра. Все полученные данные помогут сузить круг поисков и выделить оптимальный вариант, соответствующий возможностям пользователя и потребностям местности.

Самодельная мачта для ветряка

Прежде всего надо определиться с точкой установки мачты. Учесть минимальное расстояние до ближайших построек или деревьев, по возможности изыскать место на пригорке или возвышении, чтобы сэкономить на высоте мачты и, соответственно, количестве материала.

Важно! Нельзя устанавливать мачту на крыше дома. На первый взгляд, такой вариант выглядит привлекательно, но он годится только для вертикальных тихоходных устройств. Появится постоянный шум и вибрация, способствующие расстройствам здоровья, депрессиям и прочим некомфортным состояниям.

Затем приступают к созданию фундаментной подушки. При выполнении работ требуется соблюдать требования СНиП, использовать качественные материалы. Поверхность основания должна быть оборудована анкерными креплениями для основания мачты.

Необходимо также установить колья для растяжек (если они планируются). Применяются металлические швеллера или уголки, закопанные в землю на 1,5 м или забетонированные для наилучшей сопротивляемости нагрузкам на отрыв.

Сборка мачты производится непосредственно на месте, если это возможно. Иначе придется изыскивать способы доставки, преодолевать отсутствие удобных подъездных путей, прочие трудности. Наиболее удобным вариантом станет изготовление всех заготовок, деталей или элементов конструкции в удобном месте — цехе, мастерской и т.п. Если проект допускает, можно изготовить отдельные части мачты, которые на месте надо лишь соединить между собой.

Необходимо предусмотреть возможность доступа к генератору. Для этого либо создают механизм опускания устройства, либо (чаще всего) приваривают к мачте скобы или штыри для подъема к генератору. Процедура обслуживания в таких условиях опасна, требует использования страховочных и защитных средств.

Установка конструкции и монтаж ветрогенератора

Установка готовой конструкции производится при помощи лебедки. Применяются разные способы:

  • подъем через перпендикулярный упор, предотвращающий падение сооружения на лебедку при нарушении равновесия
  • установка одной части мачты и подъем второй половины, используя первую как точку опоры

В обоих случаях следует действовать аккуратно, соблюдать правила безопасности. Подъем обычно производится при закрепленной на фундаменте поворотной части основания мачты, которая служит шарниром и одновременно фиксирует сооружение в нужном положении. Когда мачта установлена вертикально, незамедлительно устанавливаются и натягиваются распорки. Одновременно затягиваются анкерные болты, залитые в бетон на фундаменте.

Установка ветрогенератора производится на готовую мачту. В зависимости от конструкции, производится либо опускание площадки для ветряка вниз, либо придется подниматься на мачту с ветряком в руках, что сложно, физически трудно и опасно. Вопрос подъема на высоту остается самым злободневным среди владельцев ветряков, требует максимально удобного решения.

Источник

Сборка самодельного ветрогенератора: варианты конструкции от пользователей FORUMHOUSE

О том, как самостоятельно выполнить расчет ветрогенератора, мы рассказывали в одном из прошлых материалов. Сегодня вашему вниманию будут представлены модели ВЭУ, построенные пользователями нашего портала. Также мы поделимся полезными советами, которые помогут собрать установку и не допустить при этом ошибок. Строительство ветрогенератора своими руками – задача сложная. Безошибочно справиться с ее решением может далеко не каждый (даже опытный) практик. Впрочем, любая вовремя обнаруженная ошибка может быть исправлена. На то мастеру – голова и руки.

В статье рассмотрены вопросы:

  • Из каких материалов и по каким чертежам можно изготовить лопасти ветрогенератора.
  • Порядок сборки аксиального генератора.
  • Стоит ли переделывать автомобильный генератор под ВЭУ и как это правильно сделать.
  • Как защитить ветрогенератор от бури.
  • На какой высоте устанавливать ветрогенератор.

Изготовление лопастей

Если у вас еще нет опыта в самостоятельном изготовлении винтов для домашней ВЭУ, рекомендуем не искать сложных решений, а воспользоваться простым методом, доказавшим свою эффективность на практике. Заключается он в изготовлении лопастей из обыкновенной канализационной ПВХ трубы. Этот метод прост, доступен и дешев.

Теперь о лопастях: сделал из 160-й рыжей канализационной трубы со вспененным внутренним слоем. Делал по расчету, представленному на фото.

Чаще всего в домашней ветроэнергетике используются трубы диаметром от 160 до 200 мм. С них и следует начинать свои эксперименты.

Форма и конфигурация лопастей – это параметры, которые зависят от диаметра трубы, из которой они изготовлены, от диаметра ветроколеса, от быстроходности рабочего винта и других расчетных характеристик. Чтобы не забивать себе голову аэродинамическими расчетами, вы можете воспользоваться готовой таблицей, которую выложил в соответствующей теме нашего портала ее автор. Она позволит определить геометрию лопастей, подставляя в расчетную таблицу свои собственные значения (диаметр трубы, быстроходность винта и т. д.).

Приноровился пилить электролобзиком. Получается реально быстро и качественно. Примечание: обязательно ставьте большой свободный ход пилки на лобзик, чтобы пилку не закусывало и не ломало.

Конструкция аксиального генератора

Делая выбор между трехфазным или однофазным генератором, лучше остановить свой выбор на первом варианте. Трехфазный источник тока менее подвержен вибрациям, возникающим из-за неравномерности нагрузки, и позволяет получать постоянную мощность при одинаковых оборотах ротора.

Однофазные генераторы мотать не стоит: испытано и давно проверено на практике. Только на трех фазах можно получить достойные генераторы.

Расчетные параметры генератора, о которых мы рассказывали в нашем предыдущем материале, определяются текущими потребностями в электроэнергии. И чтобы на практике они соответствовали объему вырабатываемой мощности, конструкция аксиального генератора должна отвечать определенным требованиям:

  1. Толщина всех дисков (ротора и статора) должна равняться толщине магнитов.
  2. Оптимальное соотношение катушек и магнитов – 3:4 (на каждые 3 катушки – 4 магнита). На 9 катушек – 12 магнитов (по 6 на каждый диск ротора), на 12 катушек – 16 магнитов и так далее.
  3. Оптимальное расстояние между двумя соседними магнитами, расположенными на одном диске, равно ширине этих магнитов.
Читайте также:  Объемные книжки своими руками для детей

Увеличение расстояния между двумя соседними магнитами приведет к неравномерной выработке электроэнергии. Уменьшить это расстояние можно, но лучше, все же, соблюдать оптимальные параметры.

Ошибочно делать расстояние между магнитами равным половине ширины магнита. Один человек оказался прав, когда говорил, что расстояние должно быть не меньше ширины магнита.

Если не вникать в скучную теорию, то схема перекрытия катушек аксиального генератора постоянными магнитами на практике должна выглядеть следующим образом.

В каждый момент времени одинаковые полюса магнитов аналогичным образом перекрывают обмотки катушек отдельно взятой фазы.

Вот так в реале: всё совпадает с рисунком почти на 100%, только катушки совсем немного отличаются по форме.

Последовательность сборки аксиального генератора рассмотрим на примере устройства, собранного пользователем Aleksei2011.

На этот раз я делаю дисковый аксиальный генератор. Диаметр дисков – 220 мм, магниты – 50*30*10 мм. Всего – 16 магнитов (по 8 штук на дисках). Катушки мотал проводом Ø1.06 мм по 75 витков. Катушек – 12 штук.

Изготовление статора

Как видно на фото, катушки имеют форму, похожую на вытянутую каплю воды. Это делается для того, чтобы направление движения магнитов было перпендикулярным длинным боковым участкам катушки (именно здесь индуцируется максимальная ЭДС).

Если используются круглые магниты, внутренний диаметр катушки должен примерно соответствовать диаметру магнита. Если же используются квадратные магниты, конфигурация витков катушки должна быть построена таким образом, чтобы магниты перекрывали прямые отрезки витков. Установка более длинных магнитов особого смысла не имеет, ведь максимальные значения ЭДС возникают лишь на тех участках проводника, которые расположены перпендикулярно направлению движения магнитного поля.

Изготовление статора начинается с намотки катушек. Катушки проще всего мотать по заранее заготовленному шаблону. Шаблоны бывают самыми разными: от небольших ручных приспособлений до миниатюрных самодельных станков.

Катушки каждой отдельно взятой фазы соединяются между собой последовательно: конец первой катушки соединяется с началом четвертой, конец четвертой – с началом седьмой и т. д.

Напомним, что при соединении фаз по схеме «звезда» концы обмоток (фаз) устройства соединяются в один общий узел, который будет являться нейтралью генератора. При этом три свободных провода (начало каждой фазы) подключаются к трехфазному диодному мосту.

Когда все катушки будут собраны в единую схему, можно готовить форму под заливку статора. После этого погружаем в форму всю электрическую часть и заливаем эпоксидной смолой.

Далее выкладываю фото готового статора. Заливал обычной эпоксидной смолой. Снизу и сверху стеклоткань положил. Внешний диаметр статора – 280 мм, внутреннее отверстие – 70 мм.

Изготовление ротора для аксиальника

Чаще всего самодельные аксиальные генераторы делают на основе автомобильной ступицы и совместимых с ней тормозных дисков (можно использовать самодельные металлические диски, как это сделал Aleksei2011). Схема будет следующей.

В этом случае диаметр статора больше, чем диаметр ротора. Это позволяет прикрепить статор к раме ветрогенератора с помощью металлических шпилек.

Шпильки для крепления статора М6 стоят (в количестве 3-х штук). Это исключительно для теста генератора. Впоследствии их будет 6 штук (М8). Я думаю, что для генератора такой мощности этого будет вполне достаточно.

В некоторых случаях диск статора крепится к неподвижной оси генератора. Подобный подход позволяет сделать конструкцию генератора менее габаритной, но принципы работы устройства от этого не меняются.

Противоположные магниты должны быть направлены друг к другу разноименными полюсами: если на первом диске магнит обращен к статору генератора своим южным полюсом «S», то противоположный ему магнит, расположенный на втором диске, должен быть обращен к статору полюсом «N». При этом магниты, расположенные рядом на одном диске, также должны быть сориентированы разнонаправлено.

Сила магнитного поля, которое создают неодимовые магниты, довольно велика. Поэтому регулировать расстояние между дисками статора и ротором генератора следует, используя шпилечно-резьбовое соединение.

Это вариант конструкции, в которой диаметр ротора больше диаметра статора. Статор в этом случае крепится к неподвижной оси устройства.

Также для регулировки расстояния между дисками можно использовать распорные втулки (или шайбы), которые устанавливаются на неподвижную ось генератора.

Расстояние между магнитами и статором должно быть минимальным (1…2 мм). Клеить магниты на диски генератора можно обыкновенным суперклеем. Правильнее всего осуществлять наклейку магнитов, используя заранее заготовленный шаблон (например, из фанеры).

Вот, что показали предварительные испытания генератора, выполненные пользователем Aleksei2011 с помощью шуруповерта: при 310 об/м с устройства было снято 42 вольта (соединение – звездой). С одной фазы получается 22 вольта. Расчетное сопротивление одной фазы – 0.95 Ом. После подключения АКБ шуруповёрт смог раскрутить генератор до 170 об/м, ток зарядки при этом составил 3.1А.

После длительных экспериментов, которые были связаны с модернизацией рабочего винта и другими менее масштабными усовершенствованиями, генератор продемонстрировал свои максимальные характеристики.

Наконец, к нам пришёл ветер, и я зафиксировал максимальную мощность ветряка: ветер усилился, а порывы временами достигали 12 – 14м/с. Максимальная зафиксированная мощность – 476 Ватт. При ветре 10м/с ветряк выдаёт примерно 300 Ватт.

Ветроэнергетическая установка из автомобильного генератора

Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:

  1. Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
  2. Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.

Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.

Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться к опыту пользователей, которые успели достичь в этой сфере определенных успехов.

Читайте также:  Кленовые деревья своими руками

Защита кабеля от перекручивания

Как известно, ветер не имеет постоянного направления. И если ваш ветрогенератор будет вращаться вокруг своей оси подобно флюгеру, то без дополнительных мер защиты кабель, идущий от ветрогенератора к другим элементам системы, быстро перекрутится и в течение нескольких дней придет в негодность. Предлагаем вашему вниманию несколько способов защиты от подобных неприятностей.

Способ первый: разъемное соединение

Наиболее простой, но совершенно непрактичный способ защиты заключается в установке разъемного кабельного соединения. Разъем позволяет распутать скрутившийся кабель вручную, отключив ветрогенератор от системы.

Я знаю, что некоторые внизу ставят что-то типа штепселя с розеткой. Закрутило кабель – отключил от розетки. Затем – раскрутил и воткнул вилку обратно. И мачту опускать не надо, и токосъёмники не нужны. Я это на форуме по самодельным ветрякам прочитал. Судя по словам автора, все работает и не перекручивает кабель слишком уж часто.

Способ второй: использование жесткого кабеля

Некоторые пользователи советуют подключать к генератору толстые, упругие и жесткие кабели (например, сварочные). Метод, на первый взгляд, ненадежный, но имеет право на жизнь.

Нашел на одном сайте: наш способ защиты заключается в использовании сварочного кабеля с жестким резиновым покрытием. Проблема скрученных проводов в конструкции малых ветровых турбин сильно переоценена, а сварочный кабель #4. #6 имеет особые качества: жесткая резина не дает кабелю скручиваться и препятствует повороту ветряка в одном и том же направлении.

Способ третий: установка токосъемных колец

На наш взгляд, полностью защитить кабель от перекручивания поможет только установка специальных токосъемных колец. Именно такой способ защиты реализовал в конструкции своего ветрогенератора пользователь Михаил 26.

Защита ветрогенератора от бури

Речь идет о защите устройства от ураганов и сильных порывов ветра. На практике она реализуется двумя способами:

  1. Ограничением оборотов ветроколеса с помощью электромагнитного тормоза.
  2. Уводом плоскости вращения винта от прямого воздействия ветрового потока.

Первый способ основан на подключении балластной электрической нагрузки к ветрогенератору. О нем мы уже рассказывали в одной из предыдущих статей.

Второй способ предполагает установку складывающегося хвоста, позволяющего при номинальной силе ветра направлять винт навстречу ветровому потоку, а во время бури, наоборот – уводить винт из-под ветра.

Защита складыванием хвоста происходит по следующей схеме.

  1. В безветренную погоду хвост расположен немного под наклоном (вниз и в сторону).
  2. При номинальной скорости ветра хвост выпрямляется, а винт становится параллельно воздушному потоку.
  3. Когда скорость ветра превышает номинальные значения (например, 10 м/с), давление ветра на винт становится больше, чем сила, создаваемая весом хвоста. В этот момент хвост начинает складываться, а винт уходит из-под ветра.
  4. Когда скорость ветра достигает критических значений, плоскость вращения винта становится перпендикулярно потоку ветра.

Когда ветер ослабевает, хвост под собственной тяжестью возвращается в исходное положение и поворачивает винт навстречу ветру. Для того чтобы хвост смог вернуться в исходное положение без дополнительных пружин, используется поворотный механизм с наклонным шкворнем (шарниром), который устанавливается на оси поворота хвоста.

Ось поворота хвоста установлена под наклоном: на 20° относительно вертикальной оси и на 45° относительно оси горизонтальной.

Для того чтобы механизм мог выполнять свою основную функцию, ось мачты должна находиться на определенном расстоянии от оси вращения турбины (оптимально – 10 см).

Рассчитать размеры хвоста и их зависимость от других параметров ВЭУ вам поможет таблица Excel с уже готовыми формулами. В ней желтым цветом обозначена область переменных значений.

Вашему вниманию представлен наиболее распространенный вариант механической защиты ветрогенератора. В том или ином виде он успешно используется на практике пользователями нашего портала.

При шторме тормозить винт надо его уводом из-под ветра. У меня, к примеру, при слишком сильном ветре ветряк опрокидывается винтом вверх. Не самый лучший вариант, ведь возврат в рабочее положение сопровождается заметным ударом. Но за десять лет ветряк не сломался.

Несколько слов о правильной установке ветрогенератора

Выбирая место и высоту мачты, которые бы оптимально подошли для установки ветрогенератора, следует ориентироваться на самые разные факторы: рекомендуемая высота, наличие препятствий вблизи ВЭУ, а также собственные наблюдения и замеры.

Для того чтобы рассчитать оптимальную высоту мачты для домашней ВЭУ, необходимо к высоте ближайшего препятствия (дерева, здания и т. д.), которое находится в радиусе 100 метров от мачты ветряка, прибавить еще 10 метров. Таким образом вы получите высоту нижней точки ветроколеса.

В США, например, минимально рекомендованная высота мачты для ВЭУ мощностью несколько кВт – 15 м, но чем выше, тем лучше. Нижняя часть ветроколеса должна быть, как минимум, на 10 м выше ближайшего самого высокого препятствия. Конечно, предварительно необходимо обследовать местность и выбрать оптимальную высоту мачты. На глаз это может сделать только очень опытный специалист. Во всех других случаях нужно проводить тщательные замеры в течение года (как минимум).

В процессе установки самодельных ветрогенераторов теория очень часто расходится с практикой, поэтому, в среднем, самодельные мачты имеют высоту от 6 до 12 метров. Основное преимущество самодельных вышек (мачт) заключается в том, что если какие-либо параметры не будут соответствовать вашим потребностям, конструкцию, габариты и высоту установки в любой момент можно изменить.

Богатый опыт пользователей FORUMHOUSE, посвященный созданию самодельных ветроэлектрических установок, собран в одном из разделов нашего строительного портала. Если вы всерьез интересуетесь альтернативной энергетикой, рекомендуем прочитать статью, посвященную организации системы электроснабжения на основе самодельных солнечных панелей (батарей). Наверняка, вас заинтересует и небольшое видео об особенностях правильного построения мощной и функциональной системы электроснабжения загородного дома, которая по классической схеме подключается к стандартной трансформаторной подстанции.

Источник

Оцените статью
Своими руками