Миниатюрный логический пробник
История создания
В практике каждого радиолюбителя, периодически возникают ситуации, когда под рукой нет необходимых измерительных приборов. Вот и я, однажды, в конце 90-х годов, находясь далеко от дома (да еще и в полевых условиях), столкнулся с такой ситуацией. Для поиска неисправности в промышленном оборудовании мне срочно понадобился логический пробник. Но где его возьмешь в 50 км. от ближайшего населенного пункта.
Так как ситуация возникла спонтанно и никаких ремонтов не планировалось, то кроме мультиметра, паяльника и небольшого набора деталей у меня с собой ничего не было. Оценив имеющийся у меня с собой перечень деталей в голове родилась простая до безобразия схема.
Схема простого логического пробника
Потратив вечер на изготовление и наладку пробника, к утру я обладал достаточно неплохим прибором, который в последствии доказал свою эффективность и практичность.
Работа схемы
Логический элемент (параллельно 4 элемента 2И-НЕ), включенный в режиме инвертора, находится в пограничном состоянии благодаря обратной связи через высокоомный резистор. На его входе и выходе — приблизительно Uпит/2 . Светодиоды погашены — им не хватает напряжения для зажигания. Дальше все просто — при подаче лог «1» или «0», элемент входит в обычный режим и зажигает соответствующие светодиоды.
Диод D1 — любой (лучше Шоттки), защитит устройство от случайной переполюсовки питания. В качестве микросхемы D1, без корректировки схемы, можно использовать распространенные КМОП микросхемы CD4011 (К561ЛА7), CD4001 (К561ЛЕ5), а также другие логические элементы.
С тех пор, этот пробник является моим надежным помощником. Я сделал несколько экземпляров этого прибора. Из-за своей миниатюрности (если использовать микросхему в корпусе SOIC), вся начинка пробника легко помещается в корпус маркера. Вот как выглядит пробник в сборе.
Логический пробник в корпусе маркера
Как это работает
Небольшое видео с демонстрацией работы логического пробника. Питание схемы осуществляется от источника 9 вольт.
Небольшое дополнение
Так как пробник имеет высокоомный вход, в некоторых случаях возможно слабое свечение светодиода Лог «0», особенное при напряжении 12 вольт и при непосредственном контакте рук с платой. Эти эффекты проходят при помещении устройства в корпус, экранировании и т.п. В любом случае, работе это не мешает.
Информация для заказа
Радиолюбители, желающие самостоятельно собрать миниатюрный логический пробник Микрош, могут приобрести печатные платы или набор для самостоятельной сборки миниатюрного логического пробника.
Источник
Логический пробник
В ZX-Spectrum’ах почти всегда используются микросхемы с ТТЛ входами/выходами, поэтому будет уместно рассмотреть схему логического пробника с учётом уровней сигнала ТТЛ.
Тут я немного повторю прописные истины, которые и без того известны всем заинтересованным. Величины напряжений лог.1 и лог.0 для ТТЛ видны из следующего схематичного рисунка:
Как видно крайние уровни лог.0 и лог.1 для входов и выходов несколько отличаются друг от друга. Для входа лог.0 будет при напряжении от 0,8В и менее. А выходной уровень лог.0 — это 0,4В и менее. Для лог.1 это будет 2,0В и 2,4В соотвественно.
Это сделано для того, чтобы крайние уровни лог.0 и лог.1 для выходов гарантированно попадали в диапазон напряжений для входов. Поэтому и сделана такая небольгшая «разбежка» в уровнях входов и выходов.
Всё, что попадает в диапазон напряжений между лог.0 и лог.1 (от 0,8В до 2,0В) логическим элементом не распознаётся как один из логических уровней. Если бы не было такой разбежки в уровнях (2-0,8=1,2В) любая помеха расценивалась бы как смена уровня сигнала. А так логический элемент устойчив к действиям помех с амплитудой до 1,2В, что согласитесь, очень неплохо.
У ТТЛ-входов есть интересная особенность: если вход никуда не подключен, то микросхема «считает», что на него подана лог.1. Конечно же такое «неподключение» — это очень нехорошо, хотя бы потому, что при этом висящий «в воздухе» вход микросхемы «ловит» все помехи, в результате чего возможны ложные срабатывания. Однако нас интересует другое — на «висящем в воздухе» входе всегда присутствует некоторое напряжение, величина которого попадает в неопределённый промежуток между логическими уровнями:
Your browser doesn’t support HTML5 video. Here is a link to the video instead.
Такой уровень называют «висящая единица», т.е. как бы единица есть (расценивается микросхемой как лог.1), но на самом деле её нет 🙂
Применительно к процессу ремонта и наладки компьютеров понятие «висящей единицы» полезно тем, что в случае обрыва проводника на плате или отгорания выхода какой-либо микросхемы на входы связаных с ними микросхем не подаётся сигнал, а следовательно, там будет «висящая единица», и этот момент можно зафиксировать, т.к. примерные уровни напряжения в таком состоянии микросхемы нам уже известны (порядка от 0,9В и вплоть до 2,4В).
То есть если, допустим, по схеме вход микросхемы куда-то должен быть подключен, а на нём в реальности не 0 и не 1, а «висящая единица», то что-то тут не так. В плане процесса ремонта это очень полезно!
Исходя из всего вышесказанного можно сформулировать техническое задание на создание логического пробника:
— Напряжение от 0 до 0,8В включительно считаются как лог.0;
— Напряжение от 2,0В до 5,0В считаем как лог.1;
— Напряжения от 0,9В до 2,4В считаем как «висящую единицу».
Различные конструкции логических пробников
Схема самого простого пробника был опубликована в журнале «Радиолюбитель» №9 за 1995 год:
Немного более «продвинутый» вариант этой схемы:
Таким пробником я пользовался около 18 лет. Несмотря на простоту этот пробник показывает всё: лог.0, лог.1. Даже «висящую единицу» показывает — при этом светодиод (лог.1) еле светится. Можно определять скважность импульсов по яркости свечения светодиодов. Этот пробник даже не выгорает при подаче на его входы напряжений -5В, +12В и даже выше! При подаче на пробник -5В светодиод (лог.0) горит с очень большой яркостью. При +12В на входе горит с большой яркостью светодиод (лог.1). Короче, неубиваемая схема 🙂
Для регистрации коротких импульсов, которые не видны глазом (например, импульс выбора порта) я приделал к пробнику «защёлку» на половинке триггера ТМ2:
Внешний вид пробника:
Свой вариант логического пробника
Мной предпринимались попытки сделать логический пробник с индикацией «висящей единицы» на компараторах. В статике всё работало и определялось, но в динамике пробник оказался неработоспособен. Проблема кроется в быстродействии компараторов. Доступные мне компараторы (LM339, К1401СА1, КР554СА3 и т.п.) довольно «тормозные» и не позволяют работать на частоте выше 1,5-2МГц. Для работы со схемой ZX-Spectrum это совершенно не годится. Какой толк от пробника, если он не может даже показать тактовую частоту процессора?
Но совсем недавно на Youtube на глаза попалась видео-лекция по работе логического пробника:
Лекция очень интересная и познавательная. Посмотрите её полностью!
Данная конструкция пробника меня очень заинтересовала, и я решил её повторить и проверить. По схеме из лекции всё заработало за исключением каскада для определения уровня «висящей» единицы. Однако это не является проблемой, и я сделал каскад на компараторе. Вопрос быстродействия тут не стоит, т.к. термин «висящая единица» применим к статическому состоянию микросхемы.
В итоге получился пробник со следующей схемой:
P.S. Схема пробника не самая идеальная, и при желании наверняка можно сделать проще и лучше.
Описание схемы и процесс наладки логического пробника
При подаче сигнала с уровнем лог.0 (0. 0,8В) открывается транзистор VT2, на входы DD1.2 подаётся лог.0, светодиод VD3 загорается.
При подаче сигнала с уровнем лог.1 (2. 5В) открывается транзистор VT1, на входы DD1.1 подаётся лог.1, светодиод VD1 загорается.
Резисторами R2-R3 на входе пробника устанавливается напряжение порядка 0,87-0,9В. Т.е. необходимо, чтобы это напряжение было в промежутке 0,8..0,9В, чтобы при никуда не подключенном входе пробника не горел светодиод VD3.
На компараторе DA3 сделана схема определения «висящей единицы». Резисторами R6-R7 устанавливается напряжение порядка 0,92..0,95В, при котором компаратор определит, что на входе находится уровень «висящей единицы», и загорится светодиод VD2. Напряжение на входе 2DA2 подбирается такой величины, чтобы при никуда не подключенном входе пробника не горел светодиод VD2.
Цвет свечения светодиодов можно выбрать таким, чтобы лог.0 показывался зелёным светом, лог.1 — красным, «висящая единица» — желтым. Не знаю как вам, а мне так удобнее. Светодиоды VD1 и VD3 лучше всего брать прозрачные (не матовые), чтобы хорошо был виден кристалл, и по возможности яркие, чтобы легче было заменить, если светодиод хоть чуть-чуть светится.
На микросхеме DD3 выполнен счётчик импульсов, поступающих на вход пробника. При коротких имульсах, не видных глазу, светодиоды VD4-VD7 будут исправно показывать количество импульсов в двоичной форме 🙂 Кнопкой SB1 счётчик сбрасывается с погасанием всех светодиодов.
Инверторы микросхемы DD2 используются для того, чтобы активным уровнем (когда зажигается светодиод) был лог.0, т.к. ТТЛ-выход при лог.0 способен отдать в нагрузку ток до 16 мА. При выходной лог.1 выход способен отдать ток 1 мА, и если мы к нему подключим светодиод (чтобы он зажигался при лог.1 на выходе) мы перегрузим выход. Токоограничивающие резисторы подобраны так, чтобы максимальный ток, протекающий через светодиоды, не превышал 15 мА.
Пробник питается от отдельного блока питания (я использовал источник питания от магнитофона «Беларусь»). На плате пробника расположен стабилизатор напряжения DA2. Учитывая не слишком большой ток потребления пробника микросхема стабилизатора используется без дополнительного теплоотвода, и при этом не перегревается.
Входные цепи пробника VT1, VT2, DA3 питаются от отдельного источника опорного напряжения DA1. Сделано это потому, что при изменении тока потребления пробника (например, когда горит большинство светодиодов) выходное напряжение стабилизатора DA2 несколько меняется, при этом соответственно будут меняться все опорные напряжения, что недопустимо.
К проверяемой конструкции от пробника отдельно подключается «общий» провод (GND).
Быстродействия микросхем пробника хватает для индикации импульсов вплоть до частоты 10 МГц. При частоте 12МГц уже пропадает индикация лог.0, но лог.1 показывается. По этой же причине вход счётчика подключен именно к DD1.1 — при проверке частоты выше 10 МГц счётчик будет считать импульсы с индикацией на светодиодах VD4..VD7.
Источник
Универсальный логический пробник
В наши дни осциллограф является доступным прибором для любого мастера или любителя. С развитием электроники простые инструменты тестирования, такие как логические пробники, в наши дни не так популярны. Однако, если осциллограф или логический анализатор вне досягаемости, логический пробник — удобный инструмент для проверки цифровых схем.
Кроме того, в некоторых случаях логический пробник является простым вариантом для проверки работоспособности низкоскоростных логических схем, поскольку он обеспечивает визуальную индикацию логического состояния в реальном времени без корректировок или калибровок.
В конструкции логического пробника, описанной в этой статье, используются распространенные и недорогие интегральные схемы, в том числе популярный таймер NE555 и интегральная схема компаратора низкого напряжения LM393.
Шаг четвертый: корпус
Дизайн корпуса для этого логического пробника доступен на TinkerCAD . Верхняя и нижняя крышки корпуса печатаются на 3D-принтере. Материал для печати ABS или PLA.
Эта конструкция корпуса предполагает, что на печатной плате установлены светодиоды 3 мм и наконечник пробника 12 SWG (2,6 мм). Если компоненты отличаются от указанных размеров, то может потребоваться соответствующая корректировка компоновки корпуса.
Верхняя и нижняя части корпуса собираются с помощью клея.
Так же файлы для печати можно скачать ниже.
Top Cover.stl
Bottom Cover.stl
Шаг пятый: тестирование логического пробника
Схема используемая для проверки логики зонда состоит из таймера NE555, двух CD4040 (двоичный счетчик на 12 разрядов) и CD4017 (счетчик имеет 10 выходов). В этой схеме NE555 обеспечивает выходную частоту 16 кГц с рабочим циклом примерно 50%. Счетчики CD4040 используются в качестве делителя частоты для генерации сигналов 500 Гц и 15 Гц.
Эта тестовая схема может использоваться для проверки всех состояний логического пробника .
Эта схема необходима, если нет генератора частоты для проверки работоспособности логического пробника.
Схема испытательной установки прилагается в виде PDF-файла.
logic-probe-test.pdf
Шаг шестой: использование логического пробника
Этот пробник имеет три светодиодных индикатора и отображает логические уровни ( высокий и низкий уровень ) и импульсные сигналы с частотой до 1,8 МГц (при рабочем цикле 60%).
Для работы этого логического пробника нужно подключить провод питания логического пробника к источнику постоянного тока. Напряжение питания должно быть от 3В до 15В. Напряжения выше этого диапазона могут повредить ИС логического пробника.
В зависимости от проверяемой схемы нужно установить переключатель в положение CMOS или TTL и можно начинать тестирование, прикоснувшись наконечником пробника к компонентам печатной платы. Для расшифровки выходного сигнала смотрим прилагаемую таблицу.
Перевод таблицы:
Светодиод Условие
Красный — не горит Наконечник зонда разомкнут или не подключен
Желтый – не горит Логический зонд или тестовая схема не включены
Зеленый — не горит Тестовый сигнал выходит за пределы логического зонда
———
Красный – горит Прямоугольная волна выше 8 кГц
Зеленый – не горит (с минимальным рабочим циклом менее 20%)
Желтый – не горит
———
Красный – не горит Прямоугольная волна ниже 8 кГц
Зеленый — горит (с минимальным рабочим циклом 20 %)
Желтый – горит
———
Красный – не горит Логика 1
Зеленый – горит
Желтый – не горит
———
Красный – не горит Логика 0
Зеленый – не горит
Желтый – горит
Индикатор импульсов (красный светодиод) чувствителен к импульсным сигналам с более высокой частотой в диапазоне от 13 кГц до 200 кГц со средним рабочим циклом 50%. Максимальная частота, поддерживаемая этим логическим пробником, составляет 1,8 МГц при рабочем цикле 60%.
Источник