Логические элементы своими руками

Логические микросхемы. Часть 2 — логические элементы

Логические элементы, работают как самостоятельные элементы в виде микросхем малой степени интеграции, так и входят в виде компонентов в микросхемы более высокой степени интеграции. Таких элементов можно насчитать не один десяток.

Но сначала расскажем только о четырех из них — это элементы И, ИЛИ, НЕ, И-НЕ. Основными элементами являются первые три, а элемент И-НЕ это уже комбинация элементов И и НЕ. Эти элементы можно назвать «кирпичиками» цифровой техники. Для начала следует рассмотреть, какова же логика их действия?

Вспомним первую часть статьи о цифровых микросхемах. Там было сказано, что напряжение на входе (выходе) микросхем в пределах 0…0,4В это уровень логического нуля, или напряжение низкого уровня. Если же напряжение в пределах 2,4…5,0В, то это уровень логической единицы или напряжение высокого уровня.

Рабочее состояние микросхем серии К155 и других микросхем с напряжением питания 5В характеризуется именно такими уровнями. Если на выходе микросхемы напряжение находится в диапазоне 0,4…2,4В (например 1,5 или 2,0В), то можно уже задуматься о замене данной микросхемы.

Практический совет: чтобы убедиться, что неисправна по выходу именно эта микросхема, следует отсоединить от нее вход следующей за ней микросхемы (или несколько входов, подключенных к выходу данной микросхемы). Эти входы могут просто «подсаживать» (перегружать) микросхему по выходу.

Условные графические обозначения

Условные графические обозначения представляют собой прямоугольник, содержащий входные и выходные линии. Входные линии элементов располагаются слева, а выходные справа. То же касается и целых листов со схемами: с левой стороны все сигналы входные, с правой выходы. Это как в книжке строка, — слева направо, так будет проще запомнить. Внутри прямоугольника находится условный символ, обозначающий функцию, выполняемую элементом.

Логический элемент И

Рассмотрение логических элементов начнем с элемента И.

Рисунок 1. Логический элемент И

Его графическое обозначение показано на рисунке 1а. Условным обозначением функции И служит английский символ «&», который в английском языке заменяет союз «и», ведь все-таки, вся эта «лженаука» изобреталась в проклятом буржуинстве.

Входы элемента обозначены как X с индексами 1 и 2, а выход, как выходная функция, буквой Y. Просто, как в школьной математике, например, Y = K*X или, в общем случае, Y = f(x) . Входов у элемента может быть и больше, чем два, что ограничивается только сложностью решаемой задачи, но, выход может быть только один.

Логика работы элемента следующая: напряжение высокого уровня на выходе Y будет лишь тогда, когда И-на входе X1 И-на входе X2 будет напряжение высокого уровня. Если входов у элемента будет 4 или 8, то указанное условие (наличие высокого уровня), должно выполняться на всех входах: И-на входе 1, И-на входе 2, И-на входе3 …..И-на входе N. Лишь в этом случае на выходе будет также высокий уровень.

Для того, чтобы было проще разобраться в логике работы элемента И, на рисунке 1б представлен его аналог в виде контактной схемы. Здесь выход элемента Y представлен лампой HL1. Если лампа светится, то это соответствует высокому уровню на выходе элемента И. Часто такие элементы называют 2-И, 3-И, 4-И, 8-И. Первая цифра указывает на количество входов.

В качестве входных сигналов X1 и X2 используются обычные «звонковые» кнопки без фиксации. Разомкнутое состояние кнопок это состояние низкого уровня, а замкнутое, естественно, высокого. В качестве источника питания на схеме показана гальваническая батарея. Пока кнопки находятся в незамкнутом состоянии, лампа, конечно, не светит. Лампа включится лишь только тогда, когда будут нажаты сразу обе кнопки, т.е. И-SB1, И-SB2. Такова логическая связь между входными и выходным сигналом элемента И.

Наглядное представление о работе элемента И можно получить глядя на временную диаграмму, показанную на рисунке 1в. Сначала сигнал высокого уровня появляется на входе X1, но на выходе Y ничего не произошло, там по-прежнему сигнал низкого уровня. На входе X2 сигнал появляется с некоторой задержкой относительно первого входа, и на выходе Y появляется сигнал высокого уровня.

Когда на входе X1 сигнал принимает низкий уровень, на выходе также устанавливается сигнал низкого уровня. Или, если сказать по-другому, сигнал высокого уровня на выходе удерживается до тех пор, пока на обоих входах присутствуют сигналы высокого уровня. То же самое можно сказать и о более многовходовых элементах И: если это будет 8-И, то чтобы на выходе получить высокий уровень, высокий же уровень должен удерживаться сразу на всех восьми входах.

Чаще всего в справочной литературе состояние выхода логических элементов в зависимости от входных сигналов приводится в виде таблиц истинности. Для рассматриваемого элемента 2-И таблица истинности приведена на рисунке 1г.

Таблица несколько похожа на таблицу умножения, только поменьше. Если внимательно ее изучить, можно заметить, что высокий уровень на выходе будет только тогда, когда на обоих входах присутствует напряжение высокого уровня или, что то-же самое, логической единицы. Кстати, сравнение таблицы истинности с таблицей умножения далеко не случайно: все таблицы истинности электронщики знают, как говорится, назубок.

Читайте также:  Как снять стеклопакет пластиковых окон своими руками

Также функцию И можно описать при помощи алгебры логики или булевой алгебры. Для двухвходового элемента формула будет выглядеть следующим образом: Y = X1*X2 или другая форма записи Y = X1^X2 .

Логический элемент ИЛИ

Следующим мы рассмотрим логический элемент ИЛИ.

Рисунок 2. Логический элемент ИЛИ

Его графическое обозначение похоже на только что рассмотренный элемент И, за исключением того, что вместо знака &, обозначающего функцию И, внутри прямоугольника вписана цифра 1, как показано на рисунке 2а. В данном случае она обозначает функцию ИЛИ. Слева расположены входы X1 и X2, которых, как и в случае функции И может быть и больше, а справа выход, обозначенный буквой Y.

В виде формулы булевой алгебры функция ИЛИ записывается так Y = X1 + X2.

Согласно этой формуле Y будет истинным тогда, когда ИЛИ на входе X1, ИЛИ на входе X2, ИЛИ на обоих входах сразу будет высокий уровень.

Понять только что сказанное поможет контактная схема, представленная на рисунке 2б: нажатие на любую из кнопок (высокий уровень) или на обе кнопки сразу, приведет к свечению лампочки (высокий уровень). В данном случае кнопки это входные сигналы X1 и X2, а лампочка выходной сигнал Y. Чтобы сказанное было проще запомнить, на рисунках 2в и 2г приведены временная диаграмма и таблица истинности соответственно: достаточно проанализировать работу показанной контактной схемы с диаграммой и таблицей, как все вопросы исчезнут.

Логический элемент НЕ, инвертор

Как говорил один преподаватель, — в цифровой технике нет ничего сложнее инвертора. Пожалуй, так и есть на самом деле.

В алгебре логики операция НЕ называется инверсией, что в переводе с английского означает отрицание, то есть уровень сигнала на выходе с точностью до наоборот соответствует входному сигналу, что в виде формулы выглядит как Y = /X

(Косая черта перед X обозначает собственно инверсию. Обычно вместо косой используется подчеркивание сверху, хотя вполне допустимо и такое обозначение.).

Условное графическое обозначение элемента НЕ представляет собой квадрат или прямоугольник, внутри которого вписана цифра 1.

Рисунок 3. Инвертор

В данном случае она обозначает, что этот элемент – инвертор. Он имеет всего один вход X и выход Y. Линия выхода начинается маленьким кружком, собственно который и говорит о том, что этот элемент инвертор.

Как только что было сказано – инвертор самая сложная схема цифровой техники. И это подтверждает его контактная схема: если до этого было достаточно лишь только кнопок, то теперь к ним добавилось реле. Пока кнопка SB1 не нажата (логический ноль на входе) реле K1 обесточено и его нормально-замкнутые контакты включают лампочку HL1, что соответствует логической единице на выходе.

Если же нажать кнопку (подать на вход логическую единицу), то реле включится, контакты K1.1 разомкнутся, лампочка погаснет, что соответствует логическому нулю на выходе. Сказанное подтверждают временная диаграмма на рисунке 3в и таблица истинности на рисунке 3г.

Логический элемент И-НЕ

Логический элемент И-НЕ есть не что иное, как сочетание логического элемента И с элементом НЕ.

Рисунок 4. Логический элемент И-НЕ

Поэтому на его условном графическом обозначении присутствует знак & (логическое И), а линия выхода начинается с кружочка, указывающего на наличие в составе элемента инвертора.

Контактный аналог логического элемента показан на рисунке 4б, и, если присмотреться, очень похож на аналог инвертора показанного на рисунке 3б: лампочка включена также через нормально-замкнутые контакты реле К1. Собственно это и есть инвертор. Реле управляется кнопками SB1 и SB2, которые соответствуют входам X1 и X2 логического элемента И-НЕ. На схеме видно, что реле будет включено только тогда, когда будут нажаты обе кнопки: в данном случае кнопки выполняют функцию & (логическое И). При этом лампа на выходе погаснет, что соответствует состоянию логического нуля.

Если же не нажаты обе кнопки, или хотя бы одна из них, то реле отключено, и лампочка на выходе схемы горит, что соответствует уровню логической единицы.

Из всего сказанного можно сделать следующие выводы:

Во-первых, если хотя бы на одном входе присутствует логический нуль, то на выходе будет логическая единица. То же состояние на выходе будет и в случае, когда нули присутствуют сразу на обоих входах. Это весьма ценное свойство элементов И-НЕ: если соединить оба входа, то элемент И-НЕ становится инвертором, — просто выполняет функцию НЕ. Такое свойство позволяет не ставить специальную микросхему, содержащую сразу шесть инверторов, когда требуется всего один или два.

Во-вторых, нуль на выходе можно получить только в том случае, если «собрать» на всех входах единички. В данном случае уместно было бы назвать рассматриваемый логический элемент 2И-НЕ. Двойка говорит о том, что этот элемент двухвхододый. Практически во всех сериях микросхем существуют также 3-х, 4-х и восьмивходовые элементы. При этом каждый из них имеет только один выход. Однако, базовым элементом во многих сериях цифровых микросхем считается элемент 2И-НЕ.

При различных вариантах соединения входов можно получить еще одно чудесное свойство. Например, соединив между собой три входа восьмивходового элемента 8И-НЕ получим элемент 6И-НЕ. А если соединить вместе все 8 входов, получится просто инвертор, о чем было сказано чуть выше.

Читайте также:  Клетка их бумаги своими руками

На этом знакомство с логическими элементами закончим. В следующей части статьи будут рассмотрены простейшие опыты с микросхемами, внутреннее устройство микросхем, простые устройства, например генераторы импульсов.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник

Логический элемент «И» на диодах, совместимый с КМОП

.
При построении устройств на цифровых КМОП микросхемах нередко возникает необходимость в одном элементе «И» с тем или иным числом входов, а свободных в составе задействованных корпусов нет. Использовать еще один? Выйти из положения можно с помощью нескольких диодов, собрав из них практически полный аналог КМОП элемента с любым числом входов. Для примера на рисунке ниже логический элемент 2И.

Если на вход хотя бы одного из диодов подан сигнал логического нуля, этот диод находится в проводящем состоянии, следовательно, на нем падает напряжение, примерно равное 0.7 В. Напряжение на выходе схемы равно прямому напряжению диода. Если оба входа находятся в состоянии логической единицы, то оба диода заперты. Выходное напряжение при этом равно или чуть меньше напряжения питания схемы Uпит. Таким образом, при низком уровне хотя бы одного входного сигнала выходное напряжение равно прямому напряжению диодов.

Какие диоды выбрать? Из характеристик интегральных схем КМОП известно, что низкий уровень входного напряжения должен быть меньше 1 В. Отсюда следует, что необходимо выбирать диоды с низким уровнем прямого напряжения, во всяком случае, оно должно быть меньше 1 В. Это могут быть любые диоды Шоттки, но вполне можно остановиться на кремниевых или германиевых импульсных диодах, имеющих прямое напряжение порядка 0.7 В. К примеру, из серии 2Д922 — 2Д927 или ГД507-ГД508, с любой буквой.

Схема интересна еще и тем, что количество входов по «И» несложно увеличить простым добавлением нужного числа диодов.
.

Источник

Логические элементы для зануд

Зануд не любят, но все мы ими бываем. Мимо самоделки, сделанной родственной душой, я пройти не смог. Глядите, какая необычная.

Считается, что логические элементы, содержащие инверторы — И-НЕ, ИЛИ-НЕ и исключающее ИЛИ-НЕ — невозможно выполнить на одних только диодах и резисторах. Но автор Hackaday под очень прикольным ником Dr. Cockroach (представьте себе таракана с фонендоскопом — смешно?) проявил немного занудства и сделал вывод, что светодиод — разновидность диода, а фоторезистор — разновидность резистора. Ага, значит, всё-таки можно!

Вначале он изготовил оптопару из светодиода и фоторезистора, после чего включил её в такую схему:

Индикаторный светодиод — тот, который не входит в состав оптопары, а виден пользователю — он подключил не последовательно с фоторезистором, а параллельно ему. Когда включён светодиод оптопары, сопротивление фоторезистора становится меньше сопротивления резистора, через который питается индикаторный светодиод. То, что при этом происходит, по-научному называется шунтированием. Индикаторный светодиод выключается. А если выключить светодиод оптопары, индикаторный, наоборот, включится, поскольку шунтирование прекратится. Значит, получился инвертор на одних диодах и резисторах. Первый логический элемент для зануд заработал!

Но оптопара, конечно, громоздкая получилась. Сейчас Dr. Cockroach это исправит.

Теперь компактнее. Только свет снаружи проникать будет. В общем, не просто так люди изобрели термоусадку. Она как раз пригодится!

Вместо индикаторного светодиода к выходу инвертора можно подключить светодиод другой оптопары, то есть, из таких логических элементов можно составлять сложные схемы. Но на одних инверторах далеко не уедешь. Понимая это, мастер добавил обычные, несветящиеся диоды и сделал симпатичный элемент И-НЕ:

Если в этой схеме переполюсовать обычные диоды и исключить левый резистор, получится элемент ИЛИ-НЕ. Теперь, когда сами элементы разработаны, мастер задумывается о том, где их применить, и делает такую штуку:

Это — RS-триггер. Два элемента И-НЕ в нём применены в качестве инверторов (оба входа соединены), два других таких же — по прямому назначению. Посмотрите на схему:

«Доктор Таракан» проверяет её:

Работает, как и подобает RS-триггеру.

Разобрав несколько ночников, Dr. Cockroach обнаружил в каждом из них по фоторезистору и маленькой плате с SMD-светодиодом. Из них он тоже сделал оптопары, а потом подумал: зачем для каждого логического элемента делать довольно крупную плату, если резисторы и обычные диоды можно очень компактно разместить, используя объёмный монтаж? Сравните новые логические элементы со старыми — разница в габаритах значительная!

Читайте также:  Полезные красивые поделки своими руками

Выводы у них расположены так:

Испытания в полном разгаре, и судя по отсутствию криков и ударов кулаком об стол, всё работает как задумывалось:

На обычных логических элементах строят не только триггеры, но и мультивибраторы. На «занудных», оказывается, тоже можно. И на не-SMD-шных:


Помню, был фантастический фильм про роботов, размножающихся разборкой разных железок и сборкой из их деталей себе подобных. Очень похоже на одного из них:

Руководствуясь электрической и логической схемами, вы тоже можете повторить эксперимент мастера:

Обратите внимание, что на первой из схем Dr. Cockroach не показал индикаторные светодиоды и резистор для них.

Затем мастер посмотрел на схему элемента И-НЕ ещё раз и понял: подтягивающий резистор на выходе не обязателен, потому что он есть на входе следующего такого же элемента. Разумеется, если следующий элемент — ИЛИ-НЕ, где подтягивающего резистора нет как раз на входе, работать ничего не будет. Но элементы ИЛИ-НЕ «Доктор Таракан» решил больше не применять, потому что в них происходит некоторая потеря напряжения логического уровня. Элементы ИЛИ всегда можно сделать из инверторов и элементов И-НЕ, которые теперь устроены так:

Так работает цепь из мультивибратора и элемента И-НЕ:

И решил мастер: а не замахнуться ли ему на целый JK-триггер?

А чтобы получилось брутальнее и нагляднее, собрал всё это Dr. Cockroach из логических элементов хоть и с SMD-шными оптопарами, но на переходных платах:

Так оно работает при тактировании мультивибратором. Схема очень критична к напряжению питания.

Ну а элемент в не-SMD-шном варианте он, наоборот, сделал миниатюрным, с применением объёмного монтажа, и придал ему вертикальную форму, чтобы было похоже на транзистор:

По поведению такая оптопара тоже подобна транзистору, и не полевому, а биполярному. Ибо управляется током.

Эти логические элементы работают на низких частотах, поэтому за их работой удобно наблюдать при помощи программного осциллографа на компьютере или смартфона. Dr. Cockroach для начала попробовал теоретически рассчитать форму сигнала на выходах мультивибратора при частоте в 43 Гц и точном подборе напряжения питания:

Реальный сигнал при 19,8 Гц:

Он же, после инвертирования:

А вот что будет, если частоту увеличить до 42,2 Гц:

«Доктор Таракан» пришёл к выводу, что искажают форму сигнала паразитные ёмкости в фоторезисторе.

Мастер экспериментирует со светодиодами габарита 0402. Они так малы, что любой из них по сравнению с фоторезистором — крошка:

Но поскольку логический элемент вновь собран не объёмным монтажом.

Мастер приделал к JK-триггеру другой мультивибратор и любуется результатом:

А теперь он делится схемами элементов НЕ, И-НЕ и ИЛИ-НЕ, причём в третьем оптопара содержит два светодиода. Непонятно, правда, как это согоасуется с тем, что ранее он хотел от ИЛИ-НЕ отказаться вообще.

Dr. Cockroach решил попробовать сделать на оптопаре линейный усилитель — не всё же логическими элементами ограничиваться. Получился именно усилитель — с ним при одной и той же амплитуде входного сигнала звук громче, чем без него. Только никогда так не делайте — если в схеме есть источник постоянной составляющей, источник сигнала надо подключать не напрямую, а через конденсатор.

А это — микросхема, точнее, микросборка с четырьмя элементами И-НЕ, прямо как в нашей любимой К155ЛА3!

Где аналог К155ЛА3, там и D-триггер — для него требуются как раз четыре логических элемента И-НЕ. Как и микросхему-прототип, самодельную микросборку можно превратить в такой триггер добавлянием только одних проводов.

Чтобы управлять триггером, мастер построил неказистый, но отлично работающий пульт. На этот раз, конечно, снова всё получилось:

RS-триггер может быть значительно упрощён, если не составлять его из логических элементов, а применить знакомый каждому электрику принцип самоблокирующегося реле. Только чуть видоизменённый, так что сразу на обе кнопки нажимать нельзя — источник питания закоротите:

Свободен от этого недостатка другой триггер, чуть более сложный. В нём снова на один и тот же фоторезистор направлены сразу два светодиода:

Чтобы у триггера был выход, «Доктор Таракан» ещё несколько усложнил схему (где теперь, наоборот, один светодиод светит сразу на два фоторезистора) и добавил инвертор:

Снова всё работает:

Чтобы сделать одновибратор с нерегулируемой длительностью импульса на выходе, Dr. Cockroach подаёт на один вход элемента И входной сигнал непосредственно, а на другой — тот же сигнал, но пропущенный через цепочку из трёх инверторов. Что, в общем-то, эквивалентно одному инвертору, только задержка более длительная:

Ну вот, на вход поступают длинные импульсы, на выходе получаются короткие. То, что надо!

Ну а впереди у мастера — целый счётчик из триггеров, только он пока не готов:

Надеюсь, теперь читатель будет чуточку лояльнее относиться к занудам. Один из которых доказал, что инвертирующие логические элементы на одних диодах и резисторах возможны, если светодиод считать бродом, а фоторезистор — резистором. И столько всего сделал интересного. А этот счётчик у него тоже обязательно получится.

Источник

Оцените статью
Своими руками