Линейные стабилизаторы напряжения своими руками

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Читайте также:  Опутенки для птицы своими руками

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Читайте также:  Пояс для детского платья своими руками

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник

Мощный стабилизатор напряжения на полевом транзисторе

Очень часто для питания различных электронных устройств требуются напряжения разной величины — например, чувствительные микроконтроллеры могут питаться (в зависимости от конкретного экземпляра) только строго от 5В, другим микросхемам бывает нужно напряжение 9-12В, а есть и совсем низковольтные устройства, которые требуют уровня питания 3-3,3В. Для повышения напряжения, например, чтобы получить из 3,7В литий-ионного аккумулятора целых 9-12В используются импульсные источники питания — в них напряжение повышается за счёт использования явления самоиндукции в катушке индуктивности. Понижающие же преобразователи можно поделить на два типа: те же импульсные и линейные. Первые обладают высоким КПД, но имеют несколько более сложную схемотехнику с применением индуктивностей и специальных ШИМ-контроллеров. Линейные актуальны в том случае, если нужна простота, миниатюрность и отсутствие каких-либо помех на выходе — ведь линейные стабилизаторы, в отличие от импульсных, наоборот уменьшают пульсации напряжения, в отличие от импульсных, которые их наоборот генерируют за счёт высокой частоты работы. И если импульсные стабилизаторы, как повышающие, так и понижающие, очень удобно использовать в виде готовых модулей, которые по небольшим ценам продаются на Али, то вот линейные стабилизаторы имеет смысл изготавливать своими руками, под заданные параметры.

Существуют специальные микросхемы стабилизаторов, например, серия 78lхх, они имеют на выходе фиксированные значения напряжения, либо LM317, микросхема в корпусе ТО-220, которая позволяет регулировать напряжение на выходе в широких пределах. Казалось бы, зачем выдумывать что-то ещё, если можно просто взять готовую LM317 — но не так всё просто, ведь она имеет один недостаток — выходной ток всего 1,5А. Конечно, этого достаточно для большинства применений линейного стабилизатора, тем более, что уже даже на таком токе он будет сильно нагреваться, но всё же иногда может возникнуть использовать именно мощный линейный стабилизатор с током более 1,5А, например, для подачи стабилизированного питания на аудио-усилитель. Использовать для питания усилителей импульсные источники — не самый лучший вариант по той причине, что помехи от импульсного источника в последствии будут попадать и в звуковой тракт, что явится в виде постороннего шума в звуке. Сделать мощный линейный стабилизатор можно разными путями, например, по схеме, представленной ниже — и использованием мощного полевого транзистора в качестве силового элемента и микросхему TL431 в качестве регулирующего. Такая схема обеспечивает хорошую стабильность выходного напряжения — как пишет автор, напряжение на выходе изменяется лишь на доли вольта в течение большого промежутка времени, а мощный полевой транзистор обеспечивает максимальный ток через нагрузку в 10А и рассеиваемую мощность в 50Вт — при использовании радиатора соответствующих размеров. Схема такого стабилизатора представлена на картинке ниже.

Читайте также:  Поменять ремень грм своими руками ваз

Данные номиналы делителя, указанные на схеме, позволят регулировать напряжение на выходе в диапазоне от 3 до 27В, чего достаточно для большинства применений, но при необходимости этот диапазон можно менять в большую или меньшую сторону, подбирая общее сопротивление переменного резистора RV1. Здесь можно использовать либо полноценный переменный резистор с удобной ручкой для регулировки, либо небольшой подстроечный, например, такие, как на фото ниже. Также имеет смысл установить сюда многооборотный подстроечный резистор, он позволит устанавливать выходное напряжение с высокой точностью.

Конденсатор С3 служит для фильтрации помех в регулировочной части, для большей стабильности выходного напряжения, а С2 — фильтрующий на выходе. Его ёмкость на схеме указана как 22 мкФ, не стоит превышать это значение, слишком большая ёмкость на выходе может привести к неправильной работе схемы, для подавления пульсаций лучше установить большую ёмкость на входе стабилизатора. Для наглядности ниже приведено изображение все трёх электролитических конденсаторов, необходимых для сборки схемы. Обратите внимание, что все они имеют полярность и при впаивании их на плату важно её не перепутать, на схеме минусовые контакты конденсаторов помечены в виде заштрихованной обкладки, а на самих корпусах минусовой вывод отмечен в виде вертикальной полоски. Несоблюдение полярности электролитических конденсаторов обычно приводит к тому, что они начинают быстро разогреваться, а если вовремя не отключить питание от схемы, то вовсе взрываются, разбрасывая вокруг ошмётки бумаги.

Транзистор на схеме можно применить, например, один из следующих вариантов — IRLZ24/32/44, либо аналогичные им. Ключевыми параметрами здесь являются максимальное напряжение и ток через транзистор.

Схема собирается на небольшой печатной плате, рисунок которой для открытия в программе Sprint Layout представлен в архиве в конце статьи, изготовить плату можно методом ЛУТ.

Как можно увидеть, плата имеет довольно миниатюрные размеры, а потому её без труда можно встроить внутрь какого-либо устройства, того же усилителя. Транзистор не спроста стоит на краю плату спинкой в сторону — его необходимо установить на массивный радиатор. Чем больше будут токи, протекающие через стабилизатор, тем сильнее будет нагреваться транзистор, соответственно и большего размера потребуется радиатор. Не лишним будет и активное охлаждение с помощью кулера в особых случаях. Расчёт рассеиваемой на транзисторе мощности достаточно прост — нужно лишь умножить разницу в вольтах между входным напряжением и выходным и умножить её на ток, протекающий в цепи — в результате получится мощность в ваттах. Обратите внимание, что она не должна превышать 50Вт, иначе транзистор может не справится с таким большим тепловыделением.


Готовая плата будет иметь такой вид, как на картинках выше. Для подключения проводов весьма удобно использовать винтовые клеммники.

Таким образом, получился весьма простой и мощный стабилизатор, который обязательно найдёт себе применение в радиолюбительском деле. Удачной сборки! Все вопросы и дополнения пишите в комментариях.

Источник

Оцените статью
Своими руками