Летающая лампа своими руками

Сайт про изобретения своими руками

МозгоЧины

Сайт про изобретения своими руками

Как самому создать магнитную левитацию в домашних условиях

Как самому создать магнитную левитацию в домашних условиях

Магнитная левитация — метод, позволяющий с использованием только силы магнитного поля поднять и переместить предметы. Подобное явление применяют для нейтрализации различных ускорений, например, свободного падения.

Сам термин «левитация» имеет английское происхождение: levitate – подняться в воздухе. Это состояние, преодоления объектом гравитации: парение в воздухе, ни на что не опираясь, не отталкиваясь, не используя реактивную тягу. Физики дают такое определение левитации: стабильное положение предмета в поле гравитации, где сила тяжести встречает сопротивление возвращающей силы, что обеспечивает стабильное положение в пространстве. Левитация в естественном состоянии не существует.

Способы реализации магнитной левитации

Обеспечить равновесие объекта в пространстве можно, применив несколько способов: сервомеханизмы, диамагнетики, сверхпроводники и системы с вихревыми токами. Такие устройства дают возможность объекту сохранить равновесие, когда он поднят над основой с магнитом. Как сделать левитирующий прибор самостоятельно выясним в статье.

Электромагнитная левитация с системой слежения

Собрав устройство на основе электромагнита с использованием фотореле достигают левитации мелких металлических предметов. Они зависают в воздухе, приподнимаясь над электромагнитом, который закреплен на стойке. Электромагнит работает, пока предмет не затеняет фотоэлемент в стойке, то есть он получает световой сигнал от контрольной точки и предмет медленно поднимается.

Поднявшись на расчётное расстояние, предмет перекрывает контрольную точку, на фотоэлемент попадает тень, магнит отключается и предмет падает. Но окончательно упасть на стойку он не успевает: как только с контрольной точки уходит тень, фотоэлемент срабатывает, и магнит вновь включается. Досконально отрегулировав систему можно добиться ощущения парения предмета в воздухе.

Этот принцип положен в основу изготовления сувенирных левитирующих глобусов

Диамагнитная левитация

Самым доступным диамагнетиком (свойство намагничиваться против магнитного поля) является грифель карандаша из графита. У него сильная магнитная восприимчивость. Способен проявлять левитацию над неодимовым магнитом при температуре от 15 °C до 25 °C. Для создания магнитной ловушки полюса магнитов располагают в шахматном порядке.

Магнит с показателем индукции в 1Тл способен повиснуть между висмутовыми пластинами. Создав магнитное поле в 11 Тл, можно стабилизировать его левитацию даже между пальцами, так как они тоже диамагнетики.

Левитация магнита над сверхпроводником (эффект Мейснера)

Взяв пластину из оксида иттрия-бария-меди и охладив ее до −195,75 °C (жидкий азот), мы придаем ей свойства сверхпроводника. Положим под подставку с неодимовым магнитом эту пластину и уберем подставку: мы видим как магнит левитирует в воздухе.

Минимальная индукция в 1мТл способна приподнять на 4 миллиметра магнит над подобным сверхпроводником. Добавляя индукцию, увеличивается расстояние между пластиной и магнитом.

Это явление основывается на свойстве сверхпроводника выталкивать магнитное поле из сверхпроводящей фазы. Поэтому магнит, сталкиваясь с полем противоположного заряда, отталкивается от него и зависает над сверхпроводником, пока тот не потеряет свойства.

Левитация в условиях вихревых токов

Вихревой ток, возникающий в переменном магнитном поле больших проводников, может удержать некоторые металлические предметы, вызывая левитацию. Например: диск из алюминия может парить над катушкой переменного тока.

Это явление объясняет закон Ленца: индуцированный диском ток создает поле, противоположного направления. Таким образом, диск будет левитировать пока в катушке есть переменный ток. Главное подобрать подходящие габариты катушки.

Такое явление можно увидеть, запустив неодимовый магнит в медную трубу. Опять же индуцированное магнитное поле направляется противоположно магниту и заставляет его парить внутри трубы.

Основные типы магнитной левитации

На парящий предмет воздействует давление, которое можно получить, используя несколько конструкций. Принято выделять электромагнитные конструкции (ЕМS) и электродинамические устройства (EDS).

Системы ЕМS нестабильны в равновесном положении. Для приемлемой работы требуется оснащение автоматизированной системой управления, которая обеспечивает бесперебойный контроль.

Притяжение возможно между ферромагнетическими проводниками и электрическим магнитом. Работа подобных систем основана на принципах действия вихревого тока в проводящем компоненте. Это возможно при наличии переменного магнитного поля.

Читайте также:  Поделки птицы сделанные своими руками

Система EDS может быть представлена двумя типами взаимодействий:

  1. Стационарная катушка находится во взаимосвязи с магнитом, который является сверхпроводником.
  2. Изменение в магнитном поле вызывает воздействие силы, генерирующей переменный ток.

Сила отталкивания, используемая в электродинамической системе, делает ее инертно стабильной. Что обуславливает использование постоянных магнитов в установках гибридного типа, а не в самостоятельных. Потому что постоянные магниты не обеспечивают стабильности положения в различных степенях свободы.

То есть, не поддерживая другими силами, которые воздействуют на статичность, невозможно обеспечить правильное функционирование системы.

Иногда планируется для обеспечения процесса левитации отойти от применения магнитных материалов и собрать систему из элементов отличной структуры. Тогда все равно возникает необходимость применять магнитные посредники (вставки).

Как сделать магнит своими руками

В основе действия всех левитаторов лежит магнитное основание. При желании можно сделать магнит в домашних условиях. Например, чтобы превратить обычную отвертку в магнитную. Понадобятся: батарейка 5 или 12 вольт, медная проволока, изолента, отвертка.

  1. Берем отвертку и наматываем на нее от 280 до 350 витков очень плотно друг к другу.
  2. Поверх проволоки наматываем изоленту, также тщательно.
  3. Подключаем один конец проволоки к плюсу батарейки, другой к минусу и оцениваем магнитный эффект.

Магнитная левитация в домашних условиях

В 90х годах XX века очень популярной стала игрушка Левитрон, основанный на воздействии магнитного поля.

Это волчок-левитатор, зависший в воздухе. Подобную игрушку можно собрать в домашних условиях, чтобы понять сущность магнитной левитации. Как сделать левитрон – представим подробную инструкцию.

Список материалов:

  • доска из дерева;
  • простой карандаш;
  • изолента;
  • шайбы из пластика или латуни;
  • картон;
  • 13 дисковых неодимовых магнитов марки N52 размером 12*3 мм;
  • широкий кольцевой магнит с наружным диаметром 20, внутренним 10мм марки N42.

Описание процесса сборки пошагово:

  1. Изготовление раскладки. Изначально волчок собирался на двух керамических кольцевых магнитах. В нашей конструкции мы применим стандартные неодимовые магниты. Для начала распечатаем схему отверстий разметки для установки магнитов. Перед началом работ проверьте соответствие размеров в распечатанной схеме и указанных в исходнике. Если все соответствует, то вырежьте макет.
  2. Готовим основание. На доску приложите бумажную схему и разметьте в соответствии с ней. Обратите внимание, что толщина деревянной заготовки должна быть от 6мм.
  3. Перенос всех блоков схемы на основу. Приклейте бумажный носитель к получившейся основе. Используя сверло Форстнера (d=12мм), накерните центр кругов. Это обеспечит дальнейшую точность сверления.
  4. Высверливаем отверстия. Применяя сверло Форстнера (d=12мм) делаем отверстия в заготовке так, чтобы дно отверстия заходило на 3 мм в верхнюю часть блока. Следует обеспечить расположение магнитов на максимально близком расстоянии к верхней части.
  5. Установка магнитов. Когда отверстия готовы, вы еще раз проверили их размеры, установите магниты одним полюсом вверх, например южным. Для определения полюсности можно применить маркированный магнит D68PC-RB. Положим блок на стальную пластину, чтобы магниты легче прошли на дно отверстий. Возьмем магниты марки N52 и разложим в отверстия по одному как можно глубже. Если необходимо протолкнуть магнит, можно взять деревянный дюбель.
  6. Как сделать волчок. Берем карандаш длиной 40 мм с заостренным концом. Наматываем на него изоленту, для увеличения диаметра подходящего под центральную часть кольцевого магнита. Вставьте карандаш в магнит, чтобы южный полюс располагался внизу, как и заостренная часть карандаша. Чтобы добавить вес волчку, воспользуйтесь пластмассовыми или латунными шайбами: наденьте несколько сверху. Для обеспечения правильной работы необходимо методом подбора определить приемлемое количество шайб.
  7. Запускаем систему. Отрезаем картон или пластик для платформы. Укладываем его на магнитное основание. На платформе волчок начинает раскручиваться и постепенно с платформой поднимается вверх до попадания в яму магнитного поля.

Если все сделано правильно, то волчок зависнет. Отладка механизма может занять продолжительное время.

Советы по регулированию волчка:

  • Постарайтесь обеспечить баланс основания. Применяйте кусочки картона или бумаги для поднятия сторон основания и его выравнивания. При отклонении от центра к какой-то стороне, поднимайте ее, подкладывая кусочки бумаги.
  • Примените трехточечное нивелирование.
  • Учитывайте вес волчка: устройство предполагает наличие магнитной ямы – сила магнита в центре слабее, чем возле края. Для удержания магнита в центре, следует добавить вес (при вылетании волчка) или уменьшить (если волчок не поднимается от платформы).
  • Еще одним значимым показателем является высота платформы: низкая платформа не дает волчку достаточно раскрутиться. Следовательно, нужно подложить под нее бумагу или картон.
  • При наличии под рукой 3D-принтера, можно распечатать на нем игрушку.
Читайте также:  Конверты для денег своими руками мастер класс

Таким образом, сделать левитрон своими руками в домашних условиях возможно. На основании представленных материалов можно сконструировать различные сувениры, предметы интерьера, способные порадовать вас и ваших знакомых. Помимо этого можно показывать всевозможные фокусы с магнитами и левитацией детям.

Источник

Светодиодная лампа – левитрон

Близятся новогодние праздники. А как прийти в Новый год без подарка, к родным, близким и друзьям. И в тоже время, еще не потеряла актуальности старая присказка, что лучший подарок – это подарок сделанный своими руками. А почему бы и нет, давайте попробуем сделать кому-либо оригинальный новогодний подарок.

В качестве такого подарка предлагается изготовить простейший левитрон. Магнитная левитация всегда выглядит впечатляюще и завораживающе. С помощью невидимой электромагнитной силы поднимем и удержим в воздухе небольшой неодимовый магнит. Создание парящего эффекта осуществляется поднятием и опусканием магнита в очень небольшом диапазоне высот, но с высокой частотой. Такое устройство сегодня можно сделать самому. И для этого не обязательно тратить много денег и времени.

В данной статье рассмотрим схему и технологию изготовления магнитного левитрона из простых и дешевых компонентов.

Схема устройства для магнитной левитации представлена ниже.

Принцип работы устройства
С помощью данной схемы, катушка L1 создает определенное электромагнитное поле, которое удерживает на весу постоянный магнит. Так как равновесное положение крайне не стабильно, для удержания магнита в схеме используется система автоматического контроля и управления. Датчиком контроля положения, служит магнитоуправляемый датчик MD1, на основе эффекта Холла. Он расположен и закреплен в центре катушки, со стороны рабочего торца.

Работа датчика Холла (MD1) заключается в понижении выходного сигнала (выв.3), вплоть до отключения, при нарастании статического или динамического магнитного поля. При понижении магнитного поля, все наоборот. Датчик Холла работает при небольшом напряжении питания (4…20 V) и малом токе (3…20 mA), управляя при этом силовым транзистором VT1.

Светодиод LED1 служит для визуального контроля над работой устройства.
Диод VD2 обеспечивает быстродействие работы катушки.

Схема работает следующим образом.
При включении устройства, ток проходит через катушку L1 и открытый транзистор VT1.
При этом катушка создает магнитное поле и начинает притягивать постоянный магнит. Магнит притягивается к электромагниту, но поднимаясь, он попадает в зону действия датчика положения (МD1) и своим магнитным полем переключает его. При этом подается сигнал на транзистор VT1, который отключает электромагнит. Тогда постоянный магнит начинает падать, но выйдя из зоны чувствительности датчика, вновь включает электромагнит. При этом магнит вновь вынужден двигаться к электромагниту. Таким образом, постоянный магнит непрерывно колеблется около определенной системой точки.

Для того, чтобы постоянный магнит в процессе колебаний не перевернулся, его положение стабилизируют, например, закрепив к нему что либо снизу. При перевороте магнита, меняется его полюс, обращенный к датчику положения МD1 и схема перестает работать, так как датчик управляется только южным полюсом магнита.

1. Основу устройства левитрона определяет катушка электромагнита. Ее выбор будет во многом определять конструкцию устройства.
Катушку можно изготовить самостоятельно. Достаточно намотать на трубку 500…600 витков эмалированного провода диаметром 0,3…0,4 мм (потребуется около 20 метров провода). Для питания такого устройства можно использовать блок питания или зарядное устройство на напряжение 5 — 9 вольт.

Возможен вариант использования имеющейся промышленной катушки. При этом желательно знать ее номинальное напряжение питания и подобрать в дальнейшем соответствующий источник питания.

В нашем случае, для оригинального подарка, требуется компактное исполнение устройства, поэтому была выбрана катушка малогабаритного реле.

2. Кроме катушки нам потребуется полевой транзистор, например, IRFZ44N или другой подобный MOSFET, опять же в зависимости от параметров применяемой катушки. В нашем случае задействован транзистор IRF630, оставшийся на кусочке платы, после утилизации видеоаппаратуры.

Также нужен датчик Холла, например, типа A3144, AH443 или другой, работающий на аналогичных режимах. В данном случае использован дешевый датчик, найденный в магазине, модели HAL 508 UA-A-2-B-1-00.

Доукомплектуем устройство остальными покупными радиодеталями согласно приведенной схеме.

3. Для проверки и настройки работы левитрона, собираем левую часть вышеприведенной схемы, за исключением резистора R2 и с изменением номинала R3 на 330 Ом. Правая часть схемы представляет собой источник питания устройства, и в этом варианте она не нужна. Сборку и отработку схемы удобнее выполнить на универсальной монтажной плате, но так как имеющийся транзистор уже был впаян вместе с радиатором на кусочке платы, подходящего размера, распаял схему рядом с ним.

Читайте также:  Паровая турбина своими руками генератор

4. Собираем катушку. Датчик Холла помещаем и временно закрепляем по центру отверстия, в самом низу катушки.

5. Испытание устройства. Зафиксируем катушку на некотором расстоянии от поверхности стола. После этого на устройство магнитной левитации можно подать питание. Так как катушка указанного ранее реле имеет сопротивление обмотки 210 Ом и рассчитана на постоянный ток напряжением 12В, подключаем ее к соответствующему источнику питания.

Затем необходимо определить, какой стороной ориентировать к электромагниту постоянный неодимовый магнит. Включаем левитрон (должен загореться светодиод) и подносим магнит к низу катушки, со стороны датчика Холла. Если магнит притягивается к катушке и светодиод при этом гаснет — то магнит ориентирован правильно, но если магнитное поле катушки выталкивает его, то магнит необходимо перевернуть. Если светодиод не гаснет, при подводе магнита любой стороной, необходимо поменять местами концы катушки, т.е. сменить ее полюса. Когда все сделано правильно, электромагнитная сила подхватит магнит и будет удерживать его в воздухе. Не забываем стабилизировать положение магнита, чтобы он в процессе колебаний не перевернулся. В данном случае использовался кольцевой неодимовый магнит диаметром 7 мм и толщиной 1 мм, взятый из микро наушника. Для его стабилизации достаточно кусочка изоленты приклеенного с одной стороны магнита.

Примечание. Первые испытания с этой катушкой прошли не удачно. Сердечник катушки реле усиливал магнитное поле, но и оказывал свое влияние при отключении катушки. В процессе наладки, положение магнита было не стабильно или магнит притягивался к сердечнику при выключенной катушке. При удалении сердечника из катушки процесс стабилизировался, что видно на фото.

6. Модернизация устройства. Дальнейшие испытания показали некоторые недостатки. Во-первых, необходимость дополнительного источника питания, что увеличивает сложность и размеры и не добавляет оригинальности подарку. Во-вторых, при увеличении дальности полета (расстоянии от катушки), нужно увеличивать напряжение питания, а это ведет к нежелательному нагреву катушки.

Возможно, конечно, остановиться и на этом варианте, используя полученные возможности. Осталось всего лишь «упаковать» устройство в достойный корпус.

7. Можно изготовить второй вариант устройства, заменив катушку на более высоковольтную (но с меньшим током потребления) и изготовить дополнительно встроенный бестрансформаторный блок питания. Полная схема этого устройства приведена в начале статьи.
Второй вариант катушки от импортного реле рассчитан на напряжение 110 вольт и имеет сопротивление обмотки 4700 Ом. Комплектуем устройство деталями согласно схеме.

8. Изготовим бестрансформаторный блок питания (правая часть схемы). Он преобразует переменный ток 220 вольт в нужное нам напряжение — около 100 вольт (определяется стабилитроном VD3) постоянного тока небольшой величины (определяется емкостью конденсатора С3 типа К73-17). Такой БП имеет преимущества – простая схема и малые габариты. Но имеет и недостаток – присутствует опасность поражения электрическим током при контакте с деталями на включенном устройстве. Однако при соблюдении правил техники безопасности, отсутствие гальванической развязки в полностью изолированном устройстве будет безопасным.

9. В качестве корпуса для левитрона используем сопрягаемые по размерам, патрон от сгоревшей люминесцентной энергосберегающей лампы и светорассеивающий плафон от светодиодной лампы. Разместим и сформируем схему на плате по внутренним размерам патрона, припаяем плату к выводам патрона.

Так как сглаживающий конденсатор С2 не входит в патрон, установим его на плату левитрона. Также уберем радиатор транзистора, так как при малой мощности нагрузки он необязателен.

В данном случае использовался кольцевой неодимовый магнит диаметром 10 мм и толщиной 3 мм. Датчик MD1 установим по центру катушки и предварительно зафиксируем кусочком поролона. Перемещая датчик Холла, добиваемся стабильного зависания магнита на максимальном расстоянии от катушки. Закрепляем положение датчика относительно катушки.

11. После настройки левитрона собираем и склеиваем устройство. Для придания устройству большего эффекта светодиодной лампы, можно добавить внутрь плафона 2-3 постоянно включенных светодиода с ограничительными резисторами. Для обеспечения теплоотвода, предусмотреть в патроне вентиляционные отверстия, если они не были предусмотрены конструкцией бывшей лампы.

Для создания заворачивающего парящего эффекта, магнит можно завуалировать какой либо легкой фигуркой, например, контуром мотылька.

Источник

Оцените статью
Своими руками