Лента сопротивления своими руками

Способы ремонта нихромовой спирали: сварка, спайка. Расчёт сопротивления

Введение

Нагревательные элементы, изготовленные из высокоомных сплавов на основе хрома и никеля, применяются во всех современных бытовых устройствах, предназначенных для преобразования электричества в тепло. Спирали или ленты из нихрома отличаются высокой сопротивляемостью к окислению благодаря образованию оксидных плёнок. По этой причине надежная пайка нихромовых нагревателей при отсутствии специального оборудования (вакуумные камеры, газовые среды) должна проводиться после обработки соединяемых поверхностей флюсами, в состав которых входят кислоты, способные разрушать защитный слой окислов. Нихромовые спирали служат дольше аналогов из фехральных сплавов, однако и они подвергаются разрушению при длительной эксплуатации. Вероятность возникновения пережиганий и обрывов увеличивается на таких участках проводника, где имеются механические повреждения, зазубрины, перегибы или перехлёсты с поверхностью соседних нагревательных элементов. Ремонт повреждённой спирали из нихрома возможно провести в домашних условиях. При соблюдении несложных технологий эксплуатационные характеристики электрооборудования будут полностью восстановлены.

Ремонт нихромовой спирали

Существуют 3 способа восстановления целостности нихромного проводника:

  • Механический — скрутки, муфты, резьбовые зажимы при помощи шайб, винтов и гаек.
  • Пайка.
  • Сварка.

Последний способ наиболее надёжен в плане прочности и долговечности. Сварные соединения не влияют в существенной мере на параметры электрических цепей, поэтому технические характеристики приборов остаются в прежних нормах. Соединения в виде скруток, муфт и зажимов создают условия для скапливания продуктов окисления, влияют на общее показатели сопротивления цепи, а также могут создавать участки повышенного нагрева, что усиливает риск повторных обрывов и выхода электрооборудования из строя.

Как сварить нихром

На производстве для надёжной сварки проволоки или ленты из нихрома применяется аргонодуговой метод. Однако проволоку небольшого диаметра, которая используется в качестве нагревательных спиралей в бытовых приборах, можно сварить при помощи самодельной сварочной системы в домашних условиях. Для этого потребуется источник питания 12-24 V с силой тока 10 ампер и выше. В качестве электрода можно взять графитовый стержень соляной батарейки. Соединяемые концы нагревательной спирали скручиваются. Минусовой провод от источника питания присоединяется к нихромовой проволоке. К плюсовому проводу через дроссель лампы дневного света присоединяется графитовый стержень. При прикосновении графита к участку сварки возникает дуга низкого напряжения, энергии которой будет достаточно, чтобы расплавить нихром.

Как спаять нихром

Спаять нихромовую спираль можно следующими способами:

  • Нагрев обмотки в виде тонкой медной проволоки.
  • Использование ляписа (азотистого серебра).
  • Применение специальных припоев и кислотосодержащих флюсов.
  • Смесь вазелина, глицерина и хлористого цинка.
  • Лимонная кислота.
  • Аспирин.
  • Флюсы фабричного изготовления, типа Ф-38Н ПЭТ.
  • Измерение с помощью приборов.
  • Табличный способ.

Первый способ — наиболее простой и доступный, но он подходит только для соединения проводников высокого сопротивления с толщиной не более 0,5 мм. Медную проволоку для обмотки лучше всего брать толщиной 0,1 мм. Нагрев производится с помощью газовой горелки, но также можно использовать обычную зажигалку с турбонаддувом. Медная проволока нагревается докрасна и прилипает к нихрому, создавая электрический контакт на атомарном уровне.

Метод пайки при помощи ляписа применяется для усиления контакта механической скрутки, если рабочая температура нагревательного элемента в приборе не будет превышать 200 °C (граница сплавления нитрата серебра). Вещество наносится на скрутку при её разогреве током. Наиболее надежные результаты даёт метод пайки с помощью специальных припоев и флюсов. Оксидная пленка, которая образуется на поверхности хромоникелевых спиралей, — основное препятствие для выполнения качественного лужения. В условиях промышленного производства для решения этой проблемы целесообразно применять вакуумные камеры или нейтральные газовые среды.

В домашних условиях используются кислотосодержащие флюсы: соединяемые поверхности очищаются от оксидной пленки, обезжириваются и покрываются флюсами при помощи паяльника. После этого производится предварительное лужение и пайка с помощью припоев ПОС 40/50/61.

Как соединить перегоревшую нихромовую спираль

Способ ремонта перегоревшей нихромовой спирали выбирается в зависимости от толщины проволоки, а также от характеристик прибора, в котором используется вышедший из строя нагревательный элемент. Если рабочая температура превышает 150-200 °C, — следует применять сварку. Механические соединения в виде скруток, муфт и зажимов дадут только временный результат, а спайка с помощью тонкой медной проволоки и газовой горелки будет надежным решением для маломощных электронагревателей, в которых работают спирали из тонкой проволоки. Пайка с помощью припоев создает отличный контакт, но быстро разрушается, если нагрев превышает 300 °C.

Читайте также:  Как сшить бандалетки своими руками выкройки пошаговое

Как произвести спайку или сварку нихрома в домашних условиях

При отсутствии специального оборудования надёжный ремонт спирали нихрома лучше всего проводить с помощью метода контактной сварки с низковольтной дугой, созданной графитовым электродом. Для этого нужен специальный источник питания, но если его под рукой нет, то можно воспользоваться способом пайки при помощи тонкой медной проволоки. Соединение получается прочным и относительно долговечным, а если произойдёт повторное выгорание, то разрыв можно без труда восстановить этим способом за несколько минут. Чтобы провести качественную пайку, концы проволоки нужно зачистить, погрузить в порошок лимонной кислоты и нагреть паяльником. Вещество расплавится и покроет поверхность металла тонким слоем. Оксидная пленка будет разрушена. Перед лужением соединяемые концы можно дополнительно обработать канифолью.

Как проверить сопротивление нихрома

Электрическое сопротивление нихромовой проволоки легко измеряется при помощи бытовых мультиметров. Операция проводится в целях расчет удельного сопротивления. Один контакт закрепляется на конце проводника. Второй контакт присоединяется на различном удалении от места создания первого контакта. Полученные показания заносятся в таблицу. Зависимость роста сопротивления от длины носит линейный характер. Для получения данных об удельном сопротивлении проволоки длиной 1 м нужно провести измерение этой характеристики у проводника соответствующих размеров, либо вывести этот параметр расчетным путем, если проволока имеет недостаточный размер. Перед снятием показаний прибор калибруется, либо измеряется собственное сопротивление проводов прибора в целях определения поправки, на величину которой следует уменьшить данные, полученные при измерении сопротивления нихрома.

Как рассчитать сопротивление нихромовой спирали

Расчёт сопротивления спирали из хромоникелевого сплава выполняется с помощью следующих методов:

Если у вас имеется готовая спираль, то вычислить её сопротивление с помощью прибора не составит труда. Однако если требуется выполнить предварительный расчёт параметров спирали перед её изготовлением, то применяется табличный способ. Таблицы удельного сопротивления различных сплавов из никеля и хрома можно найти в интернете или в специальной литературе. В таблицах приводятся данные для каждого сплава как для проволоки, так и для лент.

Данные по проволочным проводникам приводятся с учётом диаметра (от 0,1 мм). Показатели у лент приводятся с учётом площадей сечения. Чтобы рассчитать сопротивление спирали, нужно умножить общую длину проволоки на удельное сопротивление 1 м проводника с соответствующим сечением. Если информация о марке сплава отсутствует, удельное сопротивление вычисляется экспериментальным путем при помощи приборов.

Производственная фирма «ПАРТАЛ» изготавливает спирали с заданными заранее характеристиками из различных марок нихромовых сплавов. Качественно и быстро мы произведем изделие из проволоки нужной толщины, с определенным количеством и диаметром витков, а также с конкретными характеристиками сопротивления, мощности, энерговыделения и энергопотребления!

Источник: Компания «Партал»

Источник

Гайд по адресной светодиодной ленте

Данный гайд посвящен адресной светодиодной ленте применительно к использованию с микроконтроллерами (Arduino, esp8266). Рассмотрены базовые понятия, подключение, частые ошибки и места для покупки.

КУПИТЬ АДРЕСНУЮ ЛЕНТУ

Лента WS2812

  • Giant4 30 LED
  • Giant4 60 LED
  • Giant4 144 LED
  • AliExpress
  • AliExpress

Гибкий профиль

Гирлянда

Полоски

Кольца

Матрицы

  • Giant4 16×16
  • Giant4 32×8
  • AliExpress
  • AliExpress
  • Black PCB / White PCB — цвет подложки ленты, чёрная / белая
  • 1m/5m — длина ленты в метрах
  • 30/60/74/96/100/144 — количество светодиодов на 1 метр ленты
  • IPXX – влагозащита
    • IP30 лента без влагозащиты
    • IP65 лента покрыта силиконом
    • IP67 лента полностью в силиконовом коробе
  • ECO – “экономная” версия ленты, менее качественная и яркая чем обычная

ТИПЫ АДРЕСНЫХ ЛЕНТ

Сейчас появилось несколько разновидностей адресных светодиодных лент, они основаны на разных светодиодах. Рассмотрим линейку китайских чипов с названием WS28XX.

Чип Напряжение Светодиодов на чип Кол-во дата-входов Купить в РФ
WS2811 12-24V 3 1 30 led, 60 led
WS2812 3.5-5.3V 1 1 30 led, 60 led, 144 led
WS2813 3.5-5.3V 1 2 (дублирующий) 30 led, 60 led
WS2815 9-13.5V 1 2 (дублирующий) 30 led, 60 led
WS2818 12/24V 3 2 (дублирующий) 60 led

У двухпиновых лент из линейки WS28XX достаточно подключить к контроллеру только пин DI, пин BI подключать не нужно. При соединении кусков ленты нужно соединять все пины!

WS2811 (WS2818) и WS2812

Сейчас популярны два вида ленты: на чипах WS2812b и WS2811 (и новая WS2818). В чём их разница? Чип WS2812 размещён внутри светодиода, таким образом один чип управляет цветом одного диода, а питание ленты – 5 Вольт. Чип WS2811 и WS2818 размещён отдельно и от него питаются сразу 3 светодиода, таком образом можно управлять цветом только сегментами по 3 диода в каждом. А вот напряжение питания у таких лент составляет 12-24 Вольта!

Читайте также:  Кровать 1200 2000 своими руками

ЧТО ТАКОЕ АДРЕСНАЯ ЛЕНТА

Итак, данный гайд посвящен адресной светодиодной ленте, я решил сделать его познавательным и подробным, поэтому дойдя до пункта “типичные ошибки и неисправности” вы сможете диагностировать и успешно излечить косорукость сборки даже не читая вышеупомянутого пункта. Что такое адресная лента? Рассмотрим эволюцию светодиодных лент.

Обычная светодиодная лента представляет собой ленту с напаянными светодиодами и резисторами, на питание имеет два провода: плюс и минус. Напряжение бывает разное: 5 и 12 вольт постоянки и 220 переменки. Да, в розетку. Для 5 и 12 вольтовых лент нужно использовать блоки питания. Светит такая лента одним цветом, которой зависит от светодиодов.

RGB светодиодная лента. На этой ленте стоят ргб (читай эргэбэ – Рэд Грин Блю) светодиоды. Такой светодиод имеет уже 4 выхода, один общий +12 (анод), и три минуса (катода) на каждый цвет, т.е. внутри одного светодиода находится три светодиода разных цветов. Соответственно такие же выходы имеет и лента: 12, G, R, B. Подавая питание на общий 12 и любой из цветов, мы включаем этот цвет. Подадим на все три – получим белый, зелёный и красный дадут жёлтый, и так далее. Для таких лент существуют контроллеры с пультами, типичный контроллер представляет собой три полевых транзистора на каждый цвет и микроконтроллер, который управляет транзисторами, таким образом давая возможность включить любой цвет. И, как вы уже поняли, да, управлять такой лентой с ардуино очень просто. Берем три полевика, и ШИМим их analogWrit’ом, изи бризи.

Адресная светодиодная лента, вершина эволюции лент. Представляет собой ленту из адресных диодов, один такой светодиод состоит из RGB светодиода и контроллера. Да, внутри светодиода уже находится контроллер с тремя транзисторными выходами! Внутри каждого! Ну дают китайцы блэт! Благодаря такой начинке у нас есть возможность управлять цветом (то бишь яркостью r g b) любого светодиода в ленте и создавать потрясающие эффекты. Адресная лента может иметь 3-4 контакта для подключения, два из них всегда питание (5V и GND например), и остальные (один или два) – логические, для управления.

Лента “умная” и управляется по специальному цифровому протоколу. Это означает, что если просто воткнуть в ленту питание не произойдет ровным счётом ничего, то есть проверить ленту без управляющего контроллера нельзя. Если вы потрогаете цифровой вход ленты, то скорее всего несколько светодиодов загорятся случайными цветами, потому что вы вносите случайные помехи, которые воспринимаются контроллерами диодов как команды. Для управления лентой используются готовые контроллеры, но гораздо интереснее рулить лентой вручную, используя, например, платформу ардуино, для чего ленту нужно правильно подключить. И вот тут есть несколько критических моментов:

ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

1) Команды в ленте передаются от диода к диоду, паровозиком. У ленты есть начало и конец, направление движение команд на некоторых моделях указано стрелочками. Для примера рассмотрим ws2812b, у нее три контакта. Два на питание, а вот третий в начале ленты называется DI (digital input), а в конце – DO (digital output). Лента принимает команды в контакт DI! Контакт DO нужен для подключения дополнительных кусков ленты или соединения матриц.

2) Если в схеме возможна ситуация, при которой на ленту не будет подаваться питание 5V, но будет отправляться сигнал с микроконтроллера – лента начнёт питаться от дата-пина. В этом случае может сгореть как первый светодиод в ленте, так и пин контроллера. Не испытывайте удачу, поставьте резистор с сопротивлением 200-500 Ом. Точность резистора? Любая. Мощность резистора? Любая. Да, даже 1/4.

2.1) Если между лентой и контроллером (Arduino) большое расстояние, т.е. длинные провода (длиннее 50 см), то сигнальный провод и землю нужно скрутить в косичку для защиты от наводок, так как протокол связи у ленты достаточно скоростной (800 кГц), на него сильно влияют внешние наводки, а экранирование земляной скруткой поможет этого избежать. Без этого может наблюдаться такая картина: лента не работает до тех пор, пока не коснёшься рукой сигнального провода.

2.2) При подключении ленты к микроконтроллерам с 3.3V логикой (esp8266, ESP32, STM32) появляется проблема: лента питается от 5V, а сигнал получает 3.3V. В даташите указана максимальная разница между питанием и управляющим сигналом, если её превысить – лента не будет работать или будет работать нестабильно, с артефактами. Для исправления ситуации можно:

  • Уменьшить напряжение питания ленты до 4.5V, “промышленные” (металлические в дырочку) блоки питания позволяют это сделать (у них есть крутилка).
  • Поставить конвертер (преобразователь) уровней с 3.3 до 5V на управляющий сигнал.
  • Также я придумал весьма грязный трюк с диодом: первый светодиод в ленте можно запитать от более низкого напряжения через любой кремниевый диод (например 1N4007), а остальные – как обычно. На диоде падает около 0.6V, таким образом сигнал пройдёт через ступеньку повышения 3.3-4.4-5.0V и всё будет работать стабильно. Для этого нужно аккуратно вырезать кусочек дорожки 5V между 1 и 2 светодиодом, подключить питание ко второму, и диодом оттуда же – на первый (см. схему #1 справа).
  • Ещё один способ с нашего форума: диодом “приподнять” землю самого микроконтроллера на те же 0,6V. Для этого диод ставится между GND питания катодом и GND микроконтроллера анодом (см. схему #2 справа).
Читайте также:  Обшить имитацией бруса внутри дома своими руками

3) Самый важный пункт, который почему то все игнорируют: цифровой сигнал ходит по двум проводам, поэтому для его передачи одного провода от ардуины мало. Какой второй? Земля GND. Как? Контакт ленты GND и пин GND Ардуино (любой из имеющихся) должны быть обязательно соединены. Смотрим два примера.

4) Питание. Один цвет одного светодиода при максимальной яркости кушает 12 миллиампер. В одном светодиоде три цвета, итого

36 мА на диод. Пусть у вас есть метр ленты с плотностью 60 диод/метр, тогда 60*36 = 2.1 Ампера при максимальной яркости белого цвета, соответственно нужно брать БП, который с этим справится. Также нужно подумать, в каком режиме будет работать лента. Если это режимы типа «радуга», то мощность можно принять как половину от максимальной. Подробнее о блоках питания, а также о связанных с ними глюках читай здесь.

5) Продолжая тему питания, хочу отметить важность качества пайки силовых точек (подключение провода к ленте, подключение этого же провода к БП), а также толщину проводов. Как показывает мой опыт, брать нужно провод сечением минимум 1.5 квадрата, если нужна полная яркость. Пример: на проводе 0.75 кв.мм. на длине 1.5 метра при токе 2 Ампера падает 0.8 вольта, что критично для 5 вольт питания. Первый признак просадки напряжения: заданный программно белый цвет светит не белым, а отдаёт в жёлтый/красный. Чем краснее, тем сильнее просело напряжение!

6) Мигающая лента создаёт помехи на линию питания, а если лента и контроллер питаются от одного источника – помехи идут на микроконтроллер и могут стать причиной нестабильной работы, глюков и даже перезагрузки (если БП слабый). Для сглаживания таких помех рекомендуется ставить электролитический конденсатор 6.3V ёмкостью 470 мкФ (ставить более ёмкий нет смысла) по питанию микроконтроллера, а также более “жирный” конденсатор (1000 или 2200 мкФ) на питание ленты. Ставить их необязательно, но очень желательно. Если вы заметите зависания и глюки в работе системы (Ардуино + лента + другое железо), то причиной в 50% является как раз питание.

7) Слой меди на ленте не очень толстый (особенно на модели ECO), поэтому от точки подключения питания вдоль ленты напряжение начинает падать: чем больше яркость, тем больше просадка. Если нужно сделать большой и яркий кусок ленты, то питание нужно дублировать медным проводом 1.5 (или больше, надо экспериментировать) квадрата через каждый метр.

КАК ДЕЛАТЬ НЕЛЬЗЯ

Как мы уже поняли, для питания ленты нужен источник 5 Вольт с достаточным запасом по току, а именно: один цвет одного качественного светодиода на максимальной яркости потребляет 0.012 А (12 мА), соответственно весь светодиод – 0.036 А (36 мА) на максимальной яркости. У китайцев есть “китайские” ленты, которые потребляют меньше и светят тускло. Я всегда закупаюсь в магазине BTF lighting (ссылки в начале статьи), у них ленты качественные. Я понимаю, что порой очень хочется запитать ленту напрямую от Ардуино через USB, либо используя бортовой стабилизатор платы. Так делать нельзя. В первом случае есть риск выгорания защитного диода на плате Arduino (в худшем случае – выгорания USB порта), во втором – синий дым пойдёт из стабилизатора на плате. Если всё-таки очень хочется, есть два варианта:

    Не подключать больше количества светодиодов, при котором ток потребления будет выше 500 мА, а именно 500/32

16 штук

  • Писать код на основе библиотеки FastLED, где можно ограничить ток специальной функцией. НО! В случае отключения пина Din от источника сигнала есть риск случайного включения ленты, и никакие программные ограничения не спасут от выгорания железа.
  • Вы наверное спросите: а как тогда прошивать проект с лентой? Ведь судя по первой картинке так подключать нельзя! Оч просто: если прошивка не включает ленту сразу после запуска – прошивайте. Если включает и есть риск перегрузки по току – подключаем внешнее питание на 5V и GND.

    Источник

    Оцените статью
    Своими руками