Лазеры своими руками плата

ЛАЗЕРНАЯ ГРАВИРОВКА ПЛАТ

Привет всем любителям конструкторам. Решил рассказать на что (кроме гравировки) можно использовать лазерный ЧПУ станок из Китая. Имелись ремни GT2, модуль ArduinoUNO и CNC Shield + GRBL. Прежде всего нужно описать панель управления. Принтер, на котором печатались описательные наклейки с использованием FrontDesigner 3.0, сгорел. Тогда как распечатать? И тут взгляд упал на лазер.

Гравировка надписей на пластиковых корпусах

Покрасьте корпус (желательно аэрозольной краской) в цвет, который подходит после надлежащей подготовки (очистки и обезжиривания).

Готовим соответствующий шаблон панели с отмеченными отверстиями и описаниями.

Проводим тестирование на невидимой части корпуса или в другом месте, в плане выбора мощности лазера и скорости подачи.

После выгорания удалите остатки сгоревшей краски под струей воды мягкой кистью. После сверлим отверстия и наслаждаемся красивым видом.

Изготовление печатных плат лазером

Способ придуман случайно, но оказался очень хорош для простых плат. Этот метод требует некоторого объяснения. Встал вопрос как вырезать рисунок траектории дорожек и ненужные элементы с помощью лазера, а затем снять его? После такой процедуры все равно нужно удалить светочувствительный слой, то есть промыть его раствором NaOH (каустическая сода). После этого как обычно травить.

Начало удаления ненужных мест.

После травления вид далее.

Есть небольшие сдвиги на колодках в верхней части платы. Однако это особо не беспокоит.

Идем дальше, а как насчет больших печатных плат? Идея та же, но задействовал программу CopperCAM, используемую для фрезерования печатных плат. Итак, обезжириваем, красим тонким слоем краски и прожигаем. Помещаем файлы Gerber в CopperCAM и сохраняем результат в DXF.

После открытия файла Гербера выбираем отмеченную опцию из меню.

И увидим окно с настройками.

В верхнем поле введите количество раз, которое лазер (резак) должен обойти дорожки, а в нижнем дополнительный обход контактных площадок. После ввода соответствующих значений программа начинает отображать полученный файл.

После увеличения видны дополнительные траектории инструмента.

Сохраняем файл в одном из многих предлагаемых форматов. После сохранения в формате, который поддерживает нашу программу гравировки, приступаем к работе.

После сжигания и удаления сгоревшей краски.

И после травления можете увидеть эффект. Есть небольшие недостатки, но об этом ниже.

Некоторые рекомендации по работе с лазером

Точность конструкции самой машины очень важна. Растровые скачки, очевидно являются неточностью полос и источника питания (через некоторое время заметил, что было включено ограничение тока в блоке питания, и, следовательно, короткие перебои в напряжении. Питание Arduino от USB. В планы входит покупка новых ремней и создание соответствующих натяжителей и отдельного источника питания. Что касается программного обеспечения, тесты проводились на GRBL 0,9 и 1,1, а также на контроллерах LaserGRBL и GRBL. Через некоторое время перешел на Benbox (в софт тоже Arduino), и, несмотря на то, что GRBL более культурно управляет приводом, остановился на втором — им легче пользоваться.

Конечно сюда можно ставить на обработку различные материалы — латунные и алюминиевые листы, гравировка текстолита. Было бы неплохо иметь возможность делать профессиональные лицевые панели в домашних условиях. Думаю найдется и еще несколько применений.

Материал подвергается воздействию ультрафиолетового излучения, поэтому основная проблема заключается также в выборе правильного лазера (длина волны 350 — 400 нм) и параметров, чтобы правильно его выставлять: не пережигать, но и не ждать часами.

  • Мощность лазера используется средняя. Синий лазер 445 нм 2,5 Вт. Диаметр пятна 0,1 — 0,2 мм реально, механическое разрешение x-384 шаг / мм y-400 шаг / мм (по оси Y есть дополнительная передача).
  • Что касается запахов при прожиге, вы можете почувствовать сгоревший текстолит. Тем не менее, определенно с ним меньше дыма, чем от фанеры или ПВХ.
  • Однажды установив правильное расстояние между лазером и пластиной вряд-ли придется ли его постоянно исправлять. Лазер проработал почти непрерывно две недели и прожёг несколько метров фанеры толщиной 3 мм, причём она была обработана без коррекции фокусного расстояния. Однако после такого темпа работы приводные ремни растягивались (они не были новыми, возможно дело в износе).
Читайте также:  Кран машина хватайка своими руками

После более глубокого закрашивания дорожек в CopperCam появилось что-то вроде этого:

С помощью этой опции рисуем удаление ненужной меди.

Но Benbox показывает время слишком большое. Слева сколько работает, справа сколько осталось. Плата 30 x 30 мм.

Эффект вполне нормальный. И вот плата печатная после травления.

После смывания остатков краски.

Правая платка, в CopperCam толщина фрезы 0,1 мм и 5 обходов кромок пути — время прожига 50 минут. Левая — толщина 0,2 мм и 2 обхода — время прожига около 16 минут. Практика показала что лазер хорошо режет, когда точка самая маленькая. При резке фанеры один проход составляет, скажем, полмиллиметра сгоревшей канавки, а на ее дне лазерная точка не меньше чем на пол миллиметра больше, чем она была откалибрована вручную, и уже трудно установить фокусное расстояние во второй раз. Остаётся только опустить лазер на полмиллиметра вниз, чтобы точка снова достигла своего оптимального размера. В дорогих Китайских ЧПУ есть конструкции с осью Z, которая корректирует лазер каждый проход, но это конечно дорогое удовольствие (которое для домашнего использования не особо-то и нужно).

Данный материал взят (во временное пользование) с профильного зарубежного форума.

Источник

Изготовление печатной плата при помощи лазерного гравёра без фоторезиста

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Изготовление печатной плата при помощи лазерного гравёра без фоторезиста.

Для чего нужен лазерный гравер — стационарный или как опция 3D принтера?

Кроме выжигания на фанерках, основное , это изготовление печатных плат разными способами.

Есть два основных вида технологий изготовления печатных плат при помощи бытового маломощного лазерного гравёра.

Первый вид технологий , это использование фоторезиста и засветка его при помощи лазерного гравёра. Но его мы в этой маленькой заметке рассматривать не будем.

Второй вид — очень простой. Красим черной акриловой краской фольгированный стеклотекстолит. Далее чертёж для разводки дорожек сохраняем в виде картинки JPG. Инвертируем картинку . Инвертирование делается проставкой галочки в большинстве программ подготовки кодов для лазерного гравёра. И запускаем выжигание краски в промежутках между дорожек.

У этого способа один недостаток — выжигание проходит на диодных лазерах достаточно долго. Ниже приведенную картинку лазер 2,5 ватта выжигал полчаса. А если бы засвечивал дорожки на фоторезисте, то потратил бы всего четыре минуты.

Тестовая картинка для печатной платы:

Как видим дорожка толщиной в 0,5 мм вполне удалась.

Плата тестовая — для травления не предназначена. Просто платка из интернета -попробовать эту технологию подготовки платы к травлению.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Читайте также:  Карман для жесткого диска своими руками

Отписаться от уведомлений вы всегда сможете в профиле автора.

Источник

Изготовление печатной платы с помощью диодного лазера вместо утюга. Все своими руками от начала до конца

3D-принтеры открыли безграничные возможности для домашнего или быстрого прототипирования. Теперь можно легко создать в 3D-программе практически любую модель и напечатать на 3D-принтере. Но до настоящего момента мало кто задумывался о том, что с помощью 3D-принтера можно еще изготовить электронику для того или иного решения (модели).

До сегодняшнего дня, если нужно было изготовить печатную плату для прототипа, приходилось корпеть над ней с паяльником, либо заказывать небольшую партию на производстве. Правда, многие из нас могут еще сделать это с помощью обычного утюга и лазерного принтера.

Хотя этот процесс не очень эстетичный и технологичный. В данной статье я хотел бы рассказать еще об одном способе. Для этого подойдет не только 3D-принтер, но и любой DIY гравер:

Или конструктор типа makeblock plotter xy.

Кстати, практически на любой 3D-принтер можно поставить диодный лазер, установив его в качестве дополнения или на место экструдера. Диодные лазеры отличаются малыми размерами и компактностью. Их сравнительно небольшая мощность по сравнению с СО2 лазерами в данном процессе не помеха.

Итак, как же выглядит процесс изготовления печатной платы в офисе или дома? Для этого нам понадобится омедненный стеклотекстолит, любая темная виниловая пленка (подойдет любая, прожигаемая лазером насквозь), хлорид железа (продается открыто в любых магазинах химических реактивов) и, конечно же, диодный лазер, установленный на 3D-принтер. Мощность здесь не столь важна, но мы рекомендуем использовать лазер с выходной мощностью более 2Вт (2000 мВт).

Установить лазер на любой 3D-принтер довольно легко: пример установки на Ultimaker и WanHao DuPlicator.

1. Создайте модель платы в любой программе типа inkscape (инверсионная картинка. Позже объясним, почему инверсия).
2. Переведите ее в gcode.
3. Наклейте на пластинку омедненного стелкотекстолита виниловую пленку.
4. Положите стеклотекстолит, покрытый пленкой, на 3D-принтер и включите 3D-принтер в режиме лазерной резки/гравировки.
5. Лазер выжжет на пленке инверсионную картинку того, что должно получиться в итоге.
6. Разведите порошок хлорида железа в воде (не волнуйтесь, никакой химической реакции не будет)
7. Стелкотекстолит поместите на 45-60 минут в водный раствор хлорида железа.

В водном растворе хлорида железа медь на поверхности стеклотекстолита, свободной от пленки после работы лазера, вступит в реакцию с хлоридом железа (химическая реакции травления меди) и перейдет в раствор, оставив чистый стеклотекстолит в контурах инверсионной картинки.
Дальше с помощью маленького сверла сделайте отверстия под необходимые разъемы или оставьте, как есть, и напаивайте разъемы на плату сверху.

Вот мы и рассказали вкратце о том, как с помощью обычного 3D-принтера и лазера можно создать небольшую фабрику – лабораторию по изготовлению печатных плат.

Данная технология, безусловно, неидеальна и имеет ряд недостатков, но вполне работоспособна и может найти применение в домашних условиях и небольших лабораториях.

Источник

Мощный лазер своими руками за один вечер

Кратко.

Здравствуйте дамы и господа. Сегодня я открываю серию статей, посвященных мощным лазерам, ибо хабрапоиск говорит, что люди ищут подобные статьи. Хочу рассказать, как можно в домашних условиях сделать довольно мощный лазер, а также научить вас использовать эту мощь не просто ради «посветить на облака».

Предупреждение!

мощность 500 китайских указок), который может нанести вред вашему здоровью и здоровью окружающих! Будьте предельно осторожны! Используйте специальные защитные очки и не направляйте луч лазера на людей и животных!

Узнаём.

На Хабре всего пару раз проскакивали статьи о портативных лазерах Dragon Lasers, таких, как Hulk. В этой статье я расскажу, как можно сделать лазер, не уступающий по мощности продаваемым в этом магазине большинству моделей.

Читайте также:  Полимерные дорожки для дачи своими руками

Готовим.

Для начала нужно подготовить все комплектующие:
— нерабочий (или рабочий) DVD-RW привод со скорость записи 16х или выше;
— конденсаторы 100 пФ и 100 мФ;
— резистор 2-5 Ом;
— три аккумулятора ААА;
— паяльник и провода;
— коллиматор (или китайская указка);
— стальной светодиодный фонарь.

Это необходимый минимум для изготовления простой модели драйвера. Драйвер — это, собственно, плата которая будет выводить наш лазерный диод на нужную мощность. Подключать напрямую источник питания к лазерному диоду не стоит — выйдет из строя. Лазерный диод нужно питать током, а не напряжением.

Коллиматор — это, собственно, модуль с линзой, которая сводит всё излучение в узкий луч. Готовые коллиматоры можно купить в радиомагазинах. В таких уже сразу имеется удобное место для установки лазерного диода, а стоимость составляет 200-500 рублей.

Можно использовать и коллиматор из китайской указки, однако, лазерный диод будет сложно закрепить, а сам корпус коллиматора, наверняка, будет сделан из металлизированного пластика. А значит наш диод будет плохо охлаждаться. Но и это возможно. Именно такой вариант можно посмотреть в конце статьи.

Делаем.

Сначала необходимо добыть сам лазерный диод. Это очень хрупкая и маленькая деталь нашего DVD-RW привода — будьте аккуратны. Мощный красный лазерный диод находится в каретке нашего привода. Отличить его от слабого можно по радиатору большего размера, нежели у обычного ИК-диода.

Рекомендуется использовать антистатический браслет, так как лазерный диод очень чувствителен к статическому напряжению. Если браслета нет, то можно обмотать выводы диода тонкой проволочкой, пока он будет ждать установки в корпус.

Не перепутайте полярность! Лазерный диод также выйдет из строя мгновенно при неправильной полярности подводимого питания.

На схеме указан конденсатор 200 мФ, однако, для портативности вполне хватит и 50-100 мФ.

Пробуем.

Прежде чем устанавливать лазерный диод и собирать всё в корпус, проверьте работоспособность драйвера. Подключите другой лазерный диод (нерабочий или второй, что из привода) и замерьте силу тока мультиметром. В зависимости от скоростных характеристик силу тока нужно выбирать правильно. Для 16х моделей вполне подойдет 300-350мА. Для самых быстрых 22х можно подать даже 500мА, но уже совсем другим драйвером, изготовление которого я планирую описать в другой статье.


Выглядит ужасно, но работает!

Эстетика.

Собранным на весу лазером похвастаться можно только перед такими же сумасшедшими техно-маньяками, но для красоты и удобства лучше собрать в удобный корпус. Тут уже лучше выбрать самому, как понравится. Я же смонтировал всю схему в обычный светодиодный фонарь. Его размеры не превышают 10х4см. Однако, не советую носить его с собой: мало ли какие претензии могут предъявить соответствующие органы. А хранить лучше в специальном чехле, дабы не запылилась чувствительная линза.

Это вариант с минимальными затратами — используется коллиматор от китайской указки:

Использование фабрично-изготовленного модуля позволит получить вот такие результаты:

Луч лазера виден вечером:

И, разумеется, в темноте:

Возможно.

Да, я хочу в следующих статьях рассказать и показать, как можно использовать подобные лазеры. Как сделать гораздо более мощные экземпляры, способные резать металл и дерево, а не только поджигать спички и плавить пластик. Как изготавливать голограммы и сканировать предметы для получения моделей 3D Studio Max. Как сделать мощные зеленый или синий лазеры. Сфера применения лазеров довольно широка, и одной статьёй тут не обойтись.

Источник

Оцените статью
Своими руками