Лазерный со2 чпу станок своими руками чертежи

Высококачественный лазерный co2 станок с ЧПУ своими руками! С сенсорным управлением! + Чертежи!

Около года назад я хотел купить лазерный CO2 станок, чтобы сделать свое рабочее место полноценным. Одна из проблем заключалась в том, что лазерные резаки недешевы, особенно для любителей, которым нужна большая площадь резки. Конечно, за эту цену вы также получаете отличное программное обеспечение и техническую поддержку клиентов, но когда я начал этот проект мне исполнилось 17 лет, и у меня просто не было таких денег. Вот почему я построил свой собственный лазерный СO2 станок. Это полная пошаговая инструкция, как собрать лазерный резак самому! Я включил в это руководство все файлы, необходимые для его создания.

Этот лазерный резак использует лазерную CO2 трубку мощностью 40 Вт, имеет большую площадь резки 1000 на 600 мм и оснащен сенсорным экраном для управления! Весь проект мне обошелся примерно в 170 тысяч рублей, это все равно большие деньги, но я не хотел делать его из лома. Его нужно было построить из высококачественных материалов, чтобы он не развалился за два года. И это все еще очень дешево для лазерного резака с такой большой площадью реза. Кроме того, за эту цену вы получите потрясающий опыт создания собственного лазерного станка и бесценные знания.

Он работает на двух микроконтроллерах, arduino с GRBL и raspberry pi с сенсорным экраном, чтобы сделать его автономным устройством и управлять им. Это означает, что вам не нужен компьютер для отправки файлов на вашу машину. К сожалению, на данный момент у меня нет на это времени, поэтому сенсорный экран теперь используется только для управления дополнительными функциями, такими как освещение, пневматическая система и насос. В будущем я обязательно продолжу работу над этим проектом, чтобы сделать его автономным устройством.

Важно! В этой машине используется лазер мощностью 40 Вт! Я принял все меры предосторожности при проектировании корпуса, и лазер будет активироваться только при закрытой крышке. Всегда используйте защитные очки при проверке лазера. Даже отраженный луч может быть очень опасным для глаза! Я не несу ответственности за возможные несчастные случаи.

Я очень надеюсь, что вам понравятся моя инструкция, и она поможет некоторым из вас построить свой собственный лазерный станок!

Примечание: Данная статья является переводом. Часть файлов доступных для загрузки помимо английского может быть на нидерландском языке.

Шаг 1: Дизайн

На этом этапе я расскажу о конструкции этой машины. На этом шаге нет файлов для загрузки. Я добавлю эти файлы на этапах, где я буду рассказывать о сборке или установке отдельных частей лазерного резака. Что касается этого шага, я просто объясню, как и почему я пришел к этому дизайну. Я вдохновлялся внешним видом дизайна лазерного резака серии hobby от Full Spectrum Laser.

Прежде чем сделать набросок того, как должна выглядеть машина, я составил список вещей, которые нужно учитывать при ее проектировании.

Первое и самое главное безопасность! При создании данной машины не забывайте, что безопасность является приоритетом. Поскольку этот лазерный резак использует CO2-лазер мощностью 40 Вт, очевидно, что лазерный луч и даже его отражения. Должны оставаться внутри станка. Поэтому для чехла машины я использовал темную акриловую пластину. Пластина достаточно прозрачная, чтобы вы могли видеть, что происходит внутри. Для боковых панелей я использовал ламинат высокого давления, потому что он хорошо выглядит и устойчив к лазерному излучению.

Второй фактор, который я имел в виду, — это размер рабочей зоны и самого резака. Я хотел, чтобы у него была большая площадь реза 600 на 1000 миллиметров. Зачем строить маленькую машину, если можно построить большую? Поскольку это все еще машина, сделанная своими руками, я хотел, чтобы при необходимости было легко заменять или добавлять детали. Поэтому поля всех отдельных «комнат» в машине выбраны немного шире.

Читайте также:  Магниты своими руками сердце

Помня о простоте сборки и возможной модификации этого лазерного резака, я решил построить раму из Т-образных алюминиевых 30×30 профилей.

Теперь я объясню базовый дизайн этого проекта. На изображениях этого шага я добавил несколько черновиков, которые показывают вам различные ракурсы каркаса. Конструкция состоит из пяти отдельных мест. Самое большое пространство — это рабочая зона лазерного резака. Пространство сразу за рабочей зоной — это вентиляционная комната, все пары будут всасываться из рабочей зоны в это место и выводиться наружу по вентиляционному шлангу. За вентиляционным помещением расположены два пространства друг над другом. Верхнее пространство — это пространство, куда войдет лазер. Я хотел, чтобы лазер не находился в рабочей зоне, потому что было бы плохо, если бы он был во всех этих парах. Нижнее пространство — это пространство, где будут находиться резервуар для воды и водяной насос, они необходимы для охлаждения лазера. Последняя комната — это пространство справа от машины, где будет вся электроника, драйверы, расходные материалы и сенсорный экран. Отдельные зоны пространства будут разделены акрилом толщиной 3 мм.

Шаг 2: Спецификация материалов

Я составил полную ведомость материалов, в которой есть всё необходимое для создания собственного лазерного резака. Большинство запчастей можно заказать на aliexpress, некоторые на ebay. Общая стоимость этих деталей составляет около 161 тысячи рублей. Единственное, что не включено в эту цену, — это стоимость доставки (в общей сложности около 4400 рублей) и нить для 3D-принтера. Я использовал чуть меньше двух рулонов PLA-нити (3600 рублей) для печати всех деталей. Общая стоимость этого потрясающего лазерного резака составляет около 170 тысяч рублей.

В спецификации отдельные пластины не упоминаются, потому что вы получите дополнительную информацию о них на шаге 7. Я потратил в общей сложности около 32 тысяч рублей на эти пластины.

Я также только что упомянул «гайки и болты» в спецификации. Если вы посмотрите на картинку, которую я загрузил на этом этапе, вы увидите, какие именно гайки и болты (с номером DIN) и сколько из них я купил. Я действительно не знаю, сколько из них я использовал, но количество, которое я упомянул, определенно подойдет.

Я выбрал лазерную головку с подвижной линзой, поэтому вы можете настроить расстояние по оси Z между линзой и материалом, который вы хотите вырезать, чтобы правильно установить точку фокусировки.

Шаг 3: 3D-печать некоторых вещей

Многие детали этого лазерного резака напечатаны на моем 3D-принтерe. Я загрузил все файлы, которые нужно напечатать на 3D-принтере, прежде чем вы сможете начать сборку собственной машины. В названиях этих STL-файлов я упомянул, сколько раз нужно распечатать каждую часть (названия частей написаны на голландском языке).

Вы можете увидеть некоторые из этих частей на фотографии, но не все они на нем представлены.

Цвет деталей на самом деле не имеет значения, но я напечатал все внутренние части красным цветом, а внешние части черным (некоторые внутренние части тоже пришлось напечатать черным, потому, что у меня закончилась красная нить.

Если у вас нет 3D-принтера и вы не знаете никого с принтером, вам не обязательно покупать его самостоятельно. Вы можете просто воспользоваться услугами 3D-печати, такими как 3D-хабы , это очень просто.

Однако 3D-принтер — прекрасное вложение.

Источник

Как собрать станок ЧПУ с углекислотным лазером (CO2)




В этой инструкции студент из Германии с ником Vulcaman расскажет и покажет нам, как можно построить собственный станок ЧПУ с углекислотным лазером, менее чем за 1000 евро.

Как нам говорит Википедия: Углекислотный лазер, лазер на углекислом газе (CO2-лазер) — один из первых типов газовых лазеров. На начало XXI века — один из самых мощных лазеров с непрерывным излучением с КПД, достигающим 20 %.

Читайте также:  Как установить трубы для забора своими руками

Углекислотный лазер используется для гравировки резины и пластика, резки органического стекла и металлов, сварки металлов, в том числе металлов с очень высокой теплопроводностью, таких как алюминий и латунь.

Алюминиевый профиль 5 мм паз I-типа*
810 мм 20×20 мм — 4 шт
460 мм 20×20 мм — 4 шт
205 мм 20×20 мм — 4 шт
695 мм 20×20 мм — 6 шт
790 мм 20×20 мм — 1 шт
669 мм 20×20 мм — 2 шт
63 мм 20×20 мм — 6 шт
50 мм 20×20 мм — 2 шт
83 мм 20×20 мм — 2 шт
370 мм 20x 40 мм — 2 шт
695 мм 20x 40 мм — 1 шт
460 мм 20x 40 мм — 2 шт
Весь профиль приобретался по размерам здесь

Для получения точных результатов нужен жесткий X / Y-порт. Мастер использовал линейные направляющие MGN9, которые устанавливались на алюминиевые профили. Трансмиссия осуществляется с помощью ремней GT2 10 мм.
— Линейная направляющая MGN9 350 мм — 2 шт;
— Линейный рельс 650 мм MGN9 1 шт;
— Линейная направляющая MGN9 Н — 5 шт;
— Ремень GT2-10мм 10 м;
— Шкив GT2 20 зубьев Ширина 10 мм Диаметр 5 мм — 1- шт;
— Шкив GT2 без зуба Ширина 10 мм Диаметр 5 мм — 10 шт;
— Шкив 20T 10 мм GT2 — 3 шт;
— Пневматический амортизатор 20N Gasspring — 2 шт;
— Держатель стержня SK12 — 8 шт;
— Подшипник линейный LMK12UU — 4 шт;
— Линейный стержень D12мм x 117 мм — 4 шт;
— Стержень с резьбой M5 100 мм — 2 шт;
Мастер использовал лазерный источник мощностью 40 Вт. Длина трубки 40 Вт составляет всего 700 мм, поэтому она идеально впишется в корпус 810?500 мм. Для фокусирующей линзы вам понадобится тип 12 мм. Крепление лазера также имеет встроенную пневмоподушку.
— Лазерная трубка CO2 40 Вт 700 мм;
— 3?20 мм зеркало + 1?12 мм линза + держатель;
Электроника станка основана на плате Cohension3D Mini.
— Блок питания для лазера 40 Вт;
— Электропитание 250 Вт / 48 В;
— Источник питания 24 В / 24 Вт;
— Силовой контактор 24 В;
— Реле PILZ PNOZ X1 — 2 шт;
— Бесконтактный переключатель PILZ PSEN 1.1p-20;
— DIN рейка;
— Драйвер мотора DM556 5,6A — 3 шт;
— Плата контроллера Cohension 3DMini 32Bit;
— Аварийный выключатель;
— OV5648 USB модуль камеры 1080p 120 градусов;
— Распределительный шкаф;
— Шаговый двигатель 40 мм NEMA17 2,0 A;

Шаг первый: технические характеристики и история создания станка
Три года назад студент купил свой первый лазер CO2, K40. Эта машина не совсем оправдала его ожиданий. Он был ограничен в размере гравировки, механические компоненты не очень хорошо сделаны, и работать с таким лазером было небезопасно.

Тогда он решил сделать свой собственный CO2-лазер, обладающий профессиональными возможностями, безопасностью и простотой в эксплуатации. Однако лазер должен иметь такую же площадь основания, что и K40, с учетом установки его в мастерскую площадью 8 м².
От идеи до рабочего станка у него ушло четыре месяца.

Дизайн станка R-LASER 6020 с открытым исходным кодом. Таким образом, можно получите все файлы САПР, необходимые для его изготовления бесплатно, исключая коммерческое использование.

Мастер предупреждает: опасно работать с CO2-лазером и сетевым напряжением.

Технические характеристики R-LASER 6020:
— Источник лазера CO2 мощностью 40 Вт
— Рабочая зона: 600×230 мм
— Скорость гравировки: 1000 мм / с
— Регулируемый Z-образный стол
— Поддержка камеры
— Поддержка программного обеспечения Lightburn
— промышленный дизайн


Все критически важные детали, такие как X / Y-портал и все компоненты лазера, были сделаны из алюминия. Детали фрезерованы из листового металла толщиной 4 мм / 6 мм.

Читайте также:  Охладитель воздуха для комнаты своими руками

Для корпуса он использовал алюминий-дибонд, потому что он полностью блокирует лазер CO2. Даже сфокусированный луч не может прорезать этот материал.

Большинство деталей были вырезаны из алюминия-дибонда толщиной 3 мм окрашенного в белый цвет.
Две боковые панели корпуса были вырезаны из 6 мм листа.

Окно верхней двери выполнено из оргстекла толщиной 6 мм.
Он попытался свести к минимуму использование деталей, напечатанных на 3D-принтере, а где печать была необходима, она выполнялась нитью PLA.



Все файлы для печати, резки можно скачать здесь.

В качестве программного обеспечения используется Lightburn, который будет поддерживать плату Cohension3D Mini Board и многие другие. Это программное обеспечение имеет все функции, необходимые для продуктивной работы с лазерным резаком. Скачать его можно здесь.

Шаг третий: изготовление рамы
Основная рама изготовлена из алюминиевых профилей. Все крепления шаговых двигателей были вырезаны из алюминия толщиной 4 мм, чтобы обеспечить жесткое соединение между рамой и двигателями, даже когда двигатели нагреваются.









Шаг пятый: ось Z
В качестве рабочего стола мастер использует алюминиевую пластину Honeycomp 10 мм. Пластина устанавливается на алюминиевую пластину толщиной 4 мм.

Линейные подшипники LMK12UU прикреплены к алюминиевой пластине толщиной 4 мм.





































Электронику станка можно разделить на разные группы:
1. Цепи безопасности
В цепи есть два реле безопасности PILZ X1. Одно реле используется для аварийного выключения. Если нажать аварийный выключатель, силовой контактор отключит основное напряжение. Другое реле безопасности используется для верхней крышки и отключает лазер, когда дверь открыта.

2. Распределение электроэнергии
Для распределения питания требуемых напряжений для лазера (230 В переменного тока, 24 В постоянного тока, 48 В постоянного тока) были установлены DIN-рейки и клеммные колодки.

3. Драйвер двигателя
Для шаговых двигателей NEMA17 мастер использовал драйверы DM556 5,6A 48V. Благодаря высокому напряжению 48 В удалось достичь высоких скоростей до 1000 мм / с.

4. Источники питания
В качестве источников питания он использовал 48 В 250 Вт для двигателей NEMA17 и стандартный источник питания 40 Вт для лазерной трубки CO2. Напряжение 24 В для платы Cohension3D также генерируется источником питания для CO2-лазера.

5. Cohension3D Mini
В качестве основного контроллера применяется плата Cohension3D Mini от старого лазера K40. Эта плата поддерживает Smoothieware как микропрограммное обеспечение и все функции Lightburn. В дополнение к основному контроллеру мастер также создал специальный контроллер для оси Z.






Шаг тринадцатый: Z-контроллер
Готовый Z-Controller имеет следующие параметры:
— Входное напряжение 24 В
-Рабочее напряжение 3,3 В — 5 В
-Регулируемая частота шага DIP-переключателями от 2,5 до 25 кГц
-STM32-микроконтроллер

Файл для изготовления платы можно скачать здесь.
Детали для платы:

Количество Описание Имя на плате

10x Резистор 1к 0805 R1-R10
3x Резистор 150 Ом 0805 R11-, R12, R13
3x Светодиод Красный 0805 D1, D2, D3
3x AO3400 N-канальный полевой МОП-транзистор Q1, Q2, Q3
2x Конденсатор 100 нФ 0805 C1, C2
1x SN74HC08 ДИП-14 U2
1x SN74HC32 ДИП-14 U3
1x Понижающий модуль (настроен на 5 В) U1
1x STM32F103C8T6 BP1
10x Клеммная колодка 2P 5,08 мм J2-J11
1x 3-позиционный DIP-переключатель SW1



Шаг четырнадцатый: программирование
Для программирования понадобится программатор ST-Link.
1. Загрузите «Утилиту STM32 ST-LINK»:
можно скачать программное обеспечение здесь
2. Установите и откройте «Утилиту STM32 ST-LINK»
3. Теперь откройте файл Z-Controller.hex в утилите ST-Link: После этого нужно подключить STM32 «BluePill» к ST-Link-V2. После подключения нажать кнопку «Подключиться к кнопке traget».

Наконец нажмите «Загрузить». Теперь STM32 можно прошить..
Schematic.pdf




Шаг четырнадцатый: камера
Чтобы включить одну из самых крутых функций Lightburn, нужно будет установить камеру и настроить ее, как написано здесь. Тогда можно нанести на карту гравировальное поле с его изображением, и согласовать работу с лазером.

Камера установлена в прорези окна. USB-кабель от камеры прикреплен к алюминиевым профилям верхней дверцы.

Источник

Оцените статью
Своими руками