Лазерная установка для дискотек своими руками

Лазерная установка для дискотек своими руками

Ау, мы ищем авторов!
Если Вы создали хотя бы одну игру
для своего ребенка — откликнитесь!

В последнее время лазерное шоу можно увидеть практически повсюду — в цирке, на дискотеке, на концерте, в баре, да, собственно на всех развлекательных мероприятиях.

Вот, несколько видеороликов, которые показывают как растут возможности лазерных шоу —

А хотите сделать свою простенькую лАзерную установку для лАзерного шоу из обыкновенной лАзерной указки? Гостей, например, удивить …прямо у вас дома? Предложите это сделать вашему сыну, работы немного, а в итоге получается интересная игрушка.

Для изготовления такой установки нам понадобятся следующие материалы:

Внимание. Попадание лазерного излучения в глаза — опасно. Работающую установку следует располагать так, чтобы лазерный луч ни при каких условиях не мог попасть никому в глаза, а также за пределы помещения (например, в окно).

Схема изготовления установки для лазерного шоу представлена на рисунке.

а вид сверху;

б вид сбоку:

1 — труба; 2 — резиновая мембрана; 3 — кружок из лазерного диска; 4 — лазерная указка; 5 — линия луча от лазерной указки до стены; 6 — динамик или колонка; 7 — стена.

Итак, берём и отрезаем от водопроводной трубы примерно 20 сантиметров. Тщательно зачищаем края и откладываем в сторону.

Лазерный диск лучше использовать новую болванку, на ней еще нет царапин и отражение луча будет качественней. Вырезаем из лазерного диска кружочек (квадратик) меньше, чем внутренний диаметр вашей трубы.

Далее, вырезаем из воздушного шарика или медицинской резиновой перчатки часть диаметром большим диаметра трубы на 4см. Полученный кружочек натягиваем на один край трубы и при помощи прочной нитки (резинки) закрепляем его.

Теперь кружочек из лазерного диска аккуратно приклеиваем светоотражающей стороной наружу по центру натянутой резины на трубе.

Затем, берём колонку или динамик, подключённый к любому источнику звука (компьютер, музыкальный центр, магнитофон и т.п.) Кладём колонку динамиком вверх, а самодельную лазерную установку ставим по центру динамика лазерным кружочком вверх. Включаем музыку и добиваемся, чтобы наша лазерная установка стояла устойчиво и не падала.

Теперь остается сориентировать лазер от лазерной указки на кружок из лазерного диска под некоторым углом и закрепить указку. Лазер, отражаясь от лазерного диска должен падать на стену. И, о чудо, на стене появляются замысловатые фигуры! В зависимости от исполняемой музыки, узоры на стене будут меняться. Закрепляем лазерную указку так, чтобы луч попадал под нужным углом на поверхность лазерного диска.

Для достижения более эффектного лазерного шоу, лучше, конечно, использовать несколько лазеров и разного цвета. Если в комнате сделать небольшую дымовую завесу, например из церковного ладана, то лучи лазера, проходя через дым (и пар), будут создавать объёмные фигуры.

В общем, если вы всё правильно сделали, то восторженные возгласы от домашнего лазерного шоу вам обеспечены!

А принцип работы заключается в следующем. Звуковые волны воздействуют на резиновую мембрану с закреплённым на ней кружочком из лазерного диска. В следствии этого, зеркальная поверхность лазерного диска дрожит и меняет угол отражения лазера, направленного от лазерной указки. Результат — лазерный луч малюет на стене причудливые фигуры, а добавленный дым, на пути отражённого лазерного луча, делает его видимым.

А это видео-инструкция:

PS. Если вам понадобилось, к примеру, продвинуть только что появившуюся на рынке торговую марку или услугу, то одним из способов это выполнить будет нанесение логотипа на воздушные шары. Такую рекламу (в виде воздушных шариков с логотипом) можно раздавать людям прямо на улице или качестве сувениров для потенциальных покупателей или партнеров, а так же ими можно оформить любое мероприятие.

Советуем Вам зарегистрироваться, чтобы быть полноправным пользователем нашего сайте.

Читайте также:  Кукольные домики кроватки своими руками

Источник

Мощный лазер своими руками за один вечер

Кратко.

Здравствуйте дамы и господа. Сегодня я открываю серию статей, посвященных мощным лазерам, ибо хабрапоиск говорит, что люди ищут подобные статьи. Хочу рассказать, как можно в домашних условиях сделать довольно мощный лазер, а также научить вас использовать эту мощь не просто ради «посветить на облака».

Предупреждение!

мощность 500 китайских указок), который может нанести вред вашему здоровью и здоровью окружающих! Будьте предельно осторожны! Используйте специальные защитные очки и не направляйте луч лазера на людей и животных!

Узнаём.

На Хабре всего пару раз проскакивали статьи о портативных лазерах Dragon Lasers, таких, как Hulk. В этой статье я расскажу, как можно сделать лазер, не уступающий по мощности продаваемым в этом магазине большинству моделей.

Готовим.

Для начала нужно подготовить все комплектующие:
— нерабочий (или рабочий) DVD-RW привод со скорость записи 16х или выше;
— конденсаторы 100 пФ и 100 мФ;
— резистор 2-5 Ом;
— три аккумулятора ААА;
— паяльник и провода;
— коллиматор (или китайская указка);
— стальной светодиодный фонарь.

Это необходимый минимум для изготовления простой модели драйвера. Драйвер — это, собственно, плата которая будет выводить наш лазерный диод на нужную мощность. Подключать напрямую источник питания к лазерному диоду не стоит — выйдет из строя. Лазерный диод нужно питать током, а не напряжением.

Коллиматор — это, собственно, модуль с линзой, которая сводит всё излучение в узкий луч. Готовые коллиматоры можно купить в радиомагазинах. В таких уже сразу имеется удобное место для установки лазерного диода, а стоимость составляет 200-500 рублей.

Можно использовать и коллиматор из китайской указки, однако, лазерный диод будет сложно закрепить, а сам корпус коллиматора, наверняка, будет сделан из металлизированного пластика. А значит наш диод будет плохо охлаждаться. Но и это возможно. Именно такой вариант можно посмотреть в конце статьи.

Делаем.

Сначала необходимо добыть сам лазерный диод. Это очень хрупкая и маленькая деталь нашего DVD-RW привода — будьте аккуратны. Мощный красный лазерный диод находится в каретке нашего привода. Отличить его от слабого можно по радиатору большего размера, нежели у обычного ИК-диода.

Рекомендуется использовать антистатический браслет, так как лазерный диод очень чувствителен к статическому напряжению. Если браслета нет, то можно обмотать выводы диода тонкой проволочкой, пока он будет ждать установки в корпус.

Не перепутайте полярность! Лазерный диод также выйдет из строя мгновенно при неправильной полярности подводимого питания.

На схеме указан конденсатор 200 мФ, однако, для портативности вполне хватит и 50-100 мФ.

Пробуем.

Прежде чем устанавливать лазерный диод и собирать всё в корпус, проверьте работоспособность драйвера. Подключите другой лазерный диод (нерабочий или второй, что из привода) и замерьте силу тока мультиметром. В зависимости от скоростных характеристик силу тока нужно выбирать правильно. Для 16х моделей вполне подойдет 300-350мА. Для самых быстрых 22х можно подать даже 500мА, но уже совсем другим драйвером, изготовление которого я планирую описать в другой статье.


Выглядит ужасно, но работает!

Эстетика.

Собранным на весу лазером похвастаться можно только перед такими же сумасшедшими техно-маньяками, но для красоты и удобства лучше собрать в удобный корпус. Тут уже лучше выбрать самому, как понравится. Я же смонтировал всю схему в обычный светодиодный фонарь. Его размеры не превышают 10х4см. Однако, не советую носить его с собой: мало ли какие претензии могут предъявить соответствующие органы. А хранить лучше в специальном чехле, дабы не запылилась чувствительная линза.

Это вариант с минимальными затратами — используется коллиматор от китайской указки:

Использование фабрично-изготовленного модуля позволит получить вот такие результаты:

Луч лазера виден вечером:

И, разумеется, в темноте:

Возможно.

Да, я хочу в следующих статьях рассказать и показать, как можно использовать подобные лазеры. Как сделать гораздо более мощные экземпляры, способные резать металл и дерево, а не только поджигать спички и плавить пластик. Как изготавливать голограммы и сканировать предметы для получения моделей 3D Studio Max. Как сделать мощные зеленый или синий лазеры. Сфера применения лазеров довольно широка, и одной статьёй тут не обойтись.

Читайте также:  Овощи текстильные своими руками

Источник

Лазерное шоу своими руками. Часть 1

Рисующий луч: прошлое, настоящее и будущее.

Это вводная статья о истории развития и принципах работы технологий векторного отображения информации.
Не обижайтесь, на то, что тут всё слишком «википедично», просто мне надоели глупые вопросы.
Те, кто в теме, возможно найдут для себя интересным почитать конец статьи и могут смело переходить ко второй её части по ссылке в конце.

Немножко истории.

Всё началось с того, что некий немец Фердинанд Браун попытался применить на практике так называемые катодные лучи (cathode rays) — пучок ускоренных в электрическом поле электронов, и изобрёл самую первую электронно-лучевую трубку (CRT, ЭЛТ) в 1897 году. Это была трубка с холодным катодом, электромагнитной отклоняющей системой по одной из осей (по второй оси это было вращающееся зеркало) и экраном, покрытым люминофором. В ходе дальнейших усовершенствований другими учёными (Борис Розинг, Джон Б. Джонсон, Гарри Вайнер, и изобретатель телевидения Владимир Зворыкин) в неё были добавлены катод с подогревом, отклоняющая система по второй оси и модулятор интенсивности пучка для управления яркостью свечения точки на экране. Так родилась современная электронно-лучевая трубка.

Электронный луч в ней изменяет свою траекторию в электрическом поле пластин вертикального и горизонтального отклонения (на рисунке показаны жёлтым) и попадает на люминофор экрана, вызывая его свечение. Координаты точки свечения в такой системе задаются напряжением на отклоняющих пластинах. Приблизительно такие ЭЛТ устанавливались в аналоговые осциллоскопы. Кроме электростатической, существует магнитная система отклонения луча — пучок электронов пролетает через магнитное поле, образованное катушками, и меняет свою траекторию в зависимости от силы тока в катушках.

Используя инерционность человеческого зрения и послесвечение люминофора, стало возможно создавать на экране рисунки и появился новый способ отображения информации, которым воспользовались инженеры из Массачусетского технологического института (MIT), создав первую ЭВМ Whirlwind-I (1950 год) с новейшим по тем временам устройством вывода — векторным сканирующим дисплеем. Так было положено начало развитию дисплеев с векторной развёрткой (с произвольным сканированием луча).

Во всем известном растровом способе формирования изображения (на рисунке слева) луч, скользя по строкам, формирует изображение из дискретных элементов — пикселей, образующих картинку; в векторном же способе (на рисунке справа) луч скользит позаданным векторами графическим примитивам — прямой, прямоугольнику, окружности или кривой, образуя изображение.
Широкое распространение дисплеи в векторной развёрткой получили с конца 60х годов прошлого века, и уже тогда, в отличие от растровых, могли похвастаться разрешением до 4096×4096 точек.

До недавнего времени такие дисплеи активно применялись (кое-где до сих пор применяются) в тестовом оборудовании:

как устройства отображения на радиолокационных станциях и в авиадиспетчерских:

и, конечно же, в осциллоскопах:

Многие как старые, так и современные осциллоскопы имеют возможность работы в режиме аналогового векторного дисплея. Для этого необходимо переключить осциллоскоп в режим развёртки X/Y и использовать X-вход для управления положением луча по горизонтали (у некоторых моделей также есть Z-вход, управляющий яркостью луча). Однако на современных цифровых осциллоскопах без функции «цифровой фосфор» векторная картинка теряет всю свою привлекательность и выглядит лишь простым набором образующих векторы точек.

Настоящее

На смену лампам пришли лазеры, а с удешевлением памяти и развитием устройств с растровой развёрткой векторная развёртка применяется только в определённых нишах (и в основном в авионике и с недавнего времени в автомобилестроении — HUD-системы вывода изображения на фоне внешней среды, а также в лазерной гравировке и лазерных шоу).

Поскольку последующие статьи будут о лазерном проекторе — рассмотрим, каким образом он отклоняет рисующий луч.

В настоящее время популярностью пользуются два способа управления лазерным лучом, и у каждого есть свои недостатки и преимущества:

1. Акустооптический дефлектор (АОД)

— Преимущества: высокая скорость отклонения луча.
— Недостатки: низкое разрешение, малое угловое поле сканирования (угол отклонения луча), сложность работы с лазерными лучами большой мощности, дорогая высокочастотная система управления.

Читайте также:  Необычные пепельницы своими руками

АОД работает следующим образом. В оптически-активном кристалле(например ТеО2) возбуждается акустическая волна с частотами в десятки-сотни мегагерц; при прохождении лазерного луча через такой кристалл, за счёт явлений дифракции или рефракции, меняется направление луча. В дифракционном АОД угол отклонения дифрагированного луча управляется изменением частоты акустической волны. В рефракционном АОД отклонение происходит вследствие искривления пути луча при прохождении через среду кристалла с неоднородной деформацией, которая возникает под воздействием бегущей акустической волны.

2. Механическая система развёртки на гальванометрах

— Преимущества: возможность работы с лазерными лучами любых мощностей, которые способны выдержать зеркала, высокое разрешение и точность позиционирования, небольшая цена.
— Недостатки: низкая скорость развёртки из-за применения в системе механических деталей.

Такая система построена на основе гальванометров — устройств, состоящих из электромагнита и постоянного магнита, закреплённого на одной оси с зеркалом.
При изменении тока в катушке постоянный магнит, взаимодействуя с полем катушки, поворачивает ось с зеркалом на угол, пропорциональный проходящему через катушку току. При объединении двух таких гальванометров становится возможным управление положением луча на плоскости, как показано на рисунке ниже.

Будущее

Летом 2012 года случилось одно интересное событие, которое мало кто заметил.
Sumitomo Electric и Sony представили первый в мире миниатюрный непосредственно излучающий зелёный лазер. Диоды, непосредственно излучающие красный и синий свет, уже были представлены на рынке пикопроекторов, и только непосредственно излучающие зелёные лазерные диоды всё ещё не были коммерциализованы. Вместо них использовались синтетичекие методы удвоения частоты лазерных диодов, генерирующих излучение, близкое к инфракрасному. Именно отсутствие на рынке непосредственно излучающих зелёных лазеров ограничивало характеристики видимости, цену и массовые (мобильные и автомобильные) применения лазерных технологий.

Изобретение зелёного лазерного диода даёт новый толчок в развитии коммерчески доступных технологий HUD и HMD (Head mounted display), а также мобильных пикопроекторов.

Одним из самых перспективных решений в области HUD являются лазерные сканирующие МЭМС технологии, которые могут обеспечить всегда сфокусированное, высокочёткое виртуальное изображение высокой яркости, а также низкое потребление, размер, вес и цену устройства.

Лазерная сканирующая технология в чём-то похожа на систему развёртки на гальванометрах и основана на применении(для формирования полного набора цветов) комбинаций трёх базовых цветов — красного, зелёного и синего — от лазерных диодов соответствующего цвета. Скомбинированный лазерный луч, попадая на выполненное по МЭМС технологии микроминиатюрное зеркало, отклоняется на угол, задаваемый электронной системой развёртки. За счёт миниатюрности зеркала скорость сканирования позволяет таким системам работать как в векторном, так и в растровом режиме. Разрешение сканирования может в несколько раз превышать современное Full HD.

Первый в мире коммерческий лазерный сканирующий МЭМС-блок HUD, проецирущий на ветровое стекло автомобиля информацию дополненной реальности посредством непосредственно излучающих лазеров (в том числе и нового зелёного), в недавнем времени появился в Японии. Копорация Pioneer выпустила первую в мире автомобильнуюнавигационную систему GPS на основе технологии MicroVision с дополненной реальностью — Poineer CyberNavi.

Проекторный модуль AR-HUD системы устанавливается в положение противосолнечного козырька сбоку от сиденья водителя, HUD дисплей представляет собой лист прозрачного пластика, который крепится в поле зрения водителя напротив лобового стекла, а 37-дюймовый виртуальный дисплей находится на расстоянии порядка 3 м от глаз водителя. Виртуальные элементы HUD формируются посредством сканирующих МЭМС-зеркал проектора, проецирующих лазерные лучи трёх базовых цветов пространства RGB, дающие полноцветное изображение с высоким уровнем контрастности.

Лазерные сканирующие технологии в скором времени будут повсеместно использоваться в очках дополненной реальности (например в Google Glass), для отображения информации на лобовом стекле автомобилей, в мотоциклетных шлемах и как мобильные проекторы в сотовых телефонах.

В следующей части я подробнее расскажу вам о том, как устроен лазерный проектор для световых шоу, и выдам готовую схему высокоскоростного ЦАП. А в качестве бонуса — расскажу как вывести видео на осциллограф при помощи трёх проводков и разъёмчика.

Источник

Оцените статью
Своими руками