- Простой самодельный цифровой частотомер до 10МГц (CD4060, 74C926, 74LS28)
- Частотомеры
- Частотомер на PIC16F628А своими руками
- Набор содержит:
- Описание частотомера
- Принципиальная схема частотомера
- Напряжение на выводах микроконтроллера
- Генератор для проверки кварцев
- Приступаем к сборке
- Таблица алгоритма програмирования
- Доработка частотомера
Простой самодельный цифровой частотомер до 10МГц (CD4060, 74C926, 74LS28)
Микросхема ММ74С926 (или другие аналоги 74C926 представляет собой десятичный четырехразрядный счетчик, объединенный с системой индикации из дешифратора в код для семисегментного индикатора и схемы опроса для динамической индикации. На основе этой микросхемы можно строить различные приборы, в том числе и частотомеры.
Здесь приводится описание схемы частотомера, измеряющего частоту до 9999 kHz (до 9,999 MHz) с дискретностью в 1 kHz. Частотомер выполнен на трех микросхемах. Счетчик-дешифратор на уже упомянутой 74С926, генератор измерительных импульсов на ИМС CD4060B и RS-триггер и входной ключ на 74LS28.
Рис. 1. Схема самодельного частотомера на трех микросхемах, измерение частоты до 10МГц.
Входной усилитель — формирователь простейший, по схеме ключа на транзисторе VT1. Его можно заменить любым более качественным входным усилителем — формирователем, если в этом есть необходимость.
Измеряемая частота поступает через разъем Х1 на усилитель — формирователь на транзисторе VT1. Импульсы с его коллектора поступают на ключевое устройство на элементе D1.1, на его вывод 3. Когда на выводе 2 данного элемента логический ноль, импульсы проходят сквозь него инвертируясь, и поступая на счетный вход (вывод 12) счетчика микросхемы D2. Если на выводе 2 D1.1 единица, импульсы сквозь него не проходят, и на его выходе держится логический ноль.
Управляет ключом на элементе D1.1 RS-триггер на элементах D1.2 и D1.3 той же микросхемы. В исходном состоянии триггер находится в положении с логическим нулем на выходе элемента D1.3. При этом элемент D1.1 пропускает импульсы на вход счетчика D2, потому что на его выводе 2 ноль, а ключ на транзисторе VT6 закрыт, и поэтому индикаторы выключены. В этом положении RS-триггера идет процесс измерения частоты, счетчик D2 подсчитывает импульсы, поступающие на его вывод 12.
После того, как процесс измерения заканчивается на вывод 6 D1.2 поступает логическая единица и RS-триггер меняет состояние на противоположное. На выходе элемента D1.3 устанавливается логическая единица, что приводит к закрыванию элемента D1.1 и прекращению поступления импульсов на вход счетчика D2. В то же время, единица с выхода D1.3 открывает транзистор VT6 и через него включается индикация.
Временные интервалы для управления работой частотомера генерирует микросхема D3 — CD4060B. Микросхема содержит мультивибратор и счетчик. В данном случае, частота мультивибратора задана и стабилизирована кварцевым резонатором Q1 на частоту 32768 Hz. Это обычный резонатор, применяющийся в электронных часах.
На выходе счетчика D3 с весовым коэффициентом 32 логическая единица появляется через 0,0009765625 секунды. Конечно, надо бы, чтобы она там появлялась через 0,001 секунды, и этого можно достигнуть подбором емкостей С2 и С3, если такая высокая точность необходима. Если же погрешность в 2,4% приемлема, можно оставить как есть, и не заниматься точным подбором С2 и С3.
И так, грубо говоря, через 0,001 (или около того) секунды от начала цикла единица появляется на выводе 6 микросхемы D3. Она поступает на вывод 6 D1.2 и переключает RS-триггер в состояние, когда на выходе элемента D1.3 логическая единица. Элемент D1.1 закрывается. Таким образом, процесс измерения частоты длится 0,001 секунды (или около того, если интервал не подгоняли емкостями С2 и С3).
Далее, наступает процесс индикации. Единица с выхода D1.3 не только блокирует элемент D1.1, не пуская импульсы на вход счетчика D2, но и поступает через резистор R15 на базу транзистора VT6, который открывается под её действием и подает ток на схему светодиодной индикации.
Схема светодиодной индикации состоит из четырех отдельных светодиодных семисегментных цифровых индикаторов Н1-Н4 с общим катодом. Индикаторы собраны в матрицу для динамической индикации, то есть все их одноименные сегментные выводы соединены вместе, и подключены к выходам сегментов микросхемы D2 через токоограничительные резисторы R3-R9, уравнивающие яркость свечения сегментов.
В процессе динамической индикации разряды переключаются импульсами, поступающими с выходов D1-D4 счетчика D2. Импульсы поступают на транзисторные ключи на VT2-VT5, которые переключают разряды.
Для выключения индикации служит транзистор VT6. Процесс индикации будет длиться пока на самом старшем выходе счетчика микросхемы D3 (вывод 3) не появится логическая единица. С учетом частоты кварцевого резонатора Q1 32768 Hz, это произойдет через 0,25 секунды.
Как только на выводе 3 D3 возникает единица, она обнуляет счетчик D2, а так же, возвращает RS-триггер D1.1-D1.2 в состояние с логическим нулем на выходе D1.3. При этом открывается элемент D1.3 и пускает на вход счетчика D2 импульсы, ключ на VT6 закрывается и индикация гасится. Плюс, единица с вывода 3 D3 поступает так же и на его обнуляющий вход — вывод 12 (R). Далее, весь описанный цикл повторяется. Таким образом, показания обновляются через каждые четверть секунды.
Светодиодные индикаторы HDSP-H211H можно заменить любыми семисегментными цифровыми светодиодными индикаторами с общим катодом.
Источник
Частотомеры
Частотомеры, сделанные на основе микросхем К561 (CD40) или микроконтроллеров обычно предназначены для измерения частоты не более 1 Мгц. А частотомеры в составе мультиметров DT9206A всего до 20 кГц. Программные частотомеры, использующие в качестве входа звуковую карту компьютера — до 40 кГц. Но .
Схема самодельного частотомера без входного узла, выполненный на микроконтроллере AT-tiny2313 и жидкокристаллическом дисплее DV-162. Схема с минимальным набором навесных элементов. Модуль предназначен для встраивания в лабораторные генераторы, а так же для построения на его основе частотомера .
Принципиальная схема простого частотомера, построенного на микросхемах HCF4026BEY, диапазон измеряемых частот от 1Гц до 10МГц. Сейчас радиолюбителям стала доступна зарубежная элементная база, а, подчас, она бывает даже доступнее отечественной. Вот пример, — искал счетчики К176ИЕ4 чтобы сделать .
Действие цифрового частотомера основано на измерении числа входных импульсов в течение образцового интервала времени в 1 секунду. Исследуемый сигнал подают на вход формирователя импульсов, который собран на транзисторе VT1 и элементе DD3.1, который вырабатывает электрические колебания прямоугольной .
Не сложная схема самодельного пятиразрядного частотомера с пределами измерений от 1Гц до 99999Гц, выполнен на микросхемах CD4001, CD4026, CD4040. Принципиальная схема пятиразрядного частотомера 1Гц до 99999Гц (CD4001, CD4026, CD4040). Это простой частотомер для измерения частоты .
Принципиальная схема самодельной приставки к мультиметру для измерения частоты в пределах 5Гц-20МГц. В некоторых цифровых мультиметрах, например, MY64, MY68, М320, M266F имеется встроенная функция измерения частоты, благодаря чему мультиметр может использоваться как цифровой частотомер .
Этот частотомер может работать и как самостоятельное устройство, так и всоставе генератора ЗЧ в качестве его цифровой шкалы. Частотомер предназначен для измерения частоты в пределах до 100 кГц. (0-99999 Гц). Схема состоит из входного усилителя на транзисторе VТ1, измерительного счетчика .
Частотомер, схема которого приведена ниже, может быть использован в качестве цифровой шкалы для какого-то устройства, к примеру для лабораторного генератора звуковой частоты (ЗЧ). Он измеряет частоту от 1 до 99999 Гц. Входное напряжение сигнала должно быть не ниже 0,5-0,6V. Но, при использовании .
Микросхема ММ74С926 (или другие аналоги 74C926 представляет собой десятичный четырехразрядный счетчик, объединенный с системой индикации из дешифратора в код для семисегментного индикатора и схемы опроса для динамической индикации. На основе этой микросхемы можно строить различные приборы, в том .
Частотомеры, построенные по «медленной» схеме популярны среди радиолюбителей потому, что их схема проще и не требует применения регистров или триггеров для запоминая данных предыдущего измерения. Но, недостаток таких частотомеров вих медленности. Многоразрядный частотомер без переключателя .
Источник
Частотомер на PIC16F628А своими руками
Одним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту. Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…
Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.
Один из таких несложных наборов я недорого приобрёл на сайте китайского магазина здесь: GEARBEST.com
Набор содержит:
- 1 x PCB board (печатная плата);
- 1 x микроконтроллер PIC16F628A;
- 9 x 1 кОм резистор;
- 2 x 10 кОм резистор;
- 1 x 100 кОм резистор;
- 4 x диоды;
- 3 x транзисторы S9014, 7550, S9018;
- 4 x конденсаторы;
- 1 x переменный конденсатор;
- 1 x кнопка;
- 1 x DC разъём;
- 1 x 20МГц кварц;
- 5 x цифровые индикаторы.
Описание частотомера
- Диапазон измеряемых частот: от 1 Гц до 50 МГц;
- Позволяет измерять частоты кварцевых резонаторов;
- Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
- Автоматическое переключение диапазонов измерения частоты;
- Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
- Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
- Потребляемый ток в режиме ожидания — 11 мА
Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.
Принципиальная схема частотомера
Напряжение на выводах микроконтроллера
Генератор для проверки кварцев
Приступаем к сборке
Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.
Ну и вид на весь набор в полностью разложенном виде.
Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.
Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.
Конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.
Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.
Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.
Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.
Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.
Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
Далее впаиваем транзисторы, диоды и индикаторы. В отличии от резисторов и конденсаторов здесь нужно впаивать правильно, согласно рисунку и надписям на плате.
Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.
Ну вот собственно и всё!
Теперь осталось смыть остатки канифоли щёткой со спиртом.
Осталось правильно вставить микросхему в свою «кроватку» и подключить питание к схеме.
Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)
Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.
При подключении питания и отсутствия сигнала на входе высвечивается 0.
Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.
Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.
Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.
Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.
Таблица алгоритма програмирования
Чтобы войти в режим программирования (Prog) нужно нажать и удерживать кнопку в течении 1-2 сек.
Затем нажимаем кнопку и поочередно пролистываем меню:
«Quit» — «Выход» : прерывает режим программирования, ничего не сохраняя.
«Add» — «Добавление» : сохранение измеренной частоты и в дальнейшем эта частота будет складываться с измеряемыми частотами.
«Sub» — «Вычитание» : сохранение измеренной частоты и в дальнейшем она будет вычитаться с измеряемыми частотами.
«Zero«- «Ноль» — обнуляет все ранее запрограммированные значения.
«table» — «Таблица«: в этой таблице можно выбрать основные запрограммированные частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц. После выбора записи (длительное нажатие), вы вернетесь в «Главное меню» и выберите пункт «Add» — «добавить» или «Sub» — «убавить«.
«PSave» / «NoPSV«: включает / отключает режим энергосбережения. Дисплей отключается если нет изменения частоты некоторое время.
Если показания сильно отличаются, то возможно включена предустановка. Чтобы её отключить войдите в режим программирования и затем нажимая кнопку выберите «Zero» и удерживайте пока не начнёт мигать, затем отпустите её.
Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.
Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.
Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором — частотомером.
Доработка частотомера
Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.
Можно спаять один из предложенных ниже.
Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.
… или простой, на одном транзисторе:
Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.
Схема похожего частотомера с входным каскадом усилителя.
Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:
Надеюсь, что обзор данного конструктора-частотомера был интересен и полезен. Удачи!
Источник