2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Лабораторный блок питания 0-30В 0-10А с защитами
Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. Тут нужна однослойная печатная плата 92 х 72 мм.
Схема БП 0-30 В и 0-10 А
Этот лабораторный источник питания, несомненно, будет полезным устройством как для профессионального электронщика, так и для начинающего радиолюбителя.
Параметры БП
- плавно регулируемое выходное напряжение от 0 до 30 В;
- ограничение выходного тока регулируется от 0 до 10 А;
- сигнализация ограничения тока с помощью светодиода;
- выходной ток: 8 А непрерывный, 10 А пиковый;
- максимальная пульсация 0,5 мВ;
- защита от короткого замыкания.
Схема на первый взгляд сложновата, но если вы хотите создать действительно стоящую вещь на все случаи жизни, то рекомендую за неё взяться. Ведь часто бывает что сделав на скорую руку простейший параметрический стабилизатор на паре транзисторов и снабдив его стрелочным вольтметром (типа на первое время), потом годами приходится работать с этим делом, особенно если оно уже в корпусе.
Здесь такой большой ток нагрузки достигается за счёт 5-ти параллельных транзисторов, так сказать распределенная нагрузка.
И второй момент: переключаемая вторичная обмотка, благодаря которой на низких напряжениях снижается бесполезно расходуемая энергия. За автоматическое переключение отвечает микросхема IC1 вкупе с переменником 10 кОм. Соответственно, выходное напряжение контролируется IC2, а ограничитель тока это IC3.
Токовый детектор — 6 параллельно собранных 5-ваттных резисторов по 0,33 Ома (итого 0,05 Ом). Такая сборка позволит работать с токами до 10 ампер. Диод D3 на выходе — обычная защита от обратной полярности, его выбираем чем по-мощнее.
Источник
Лабораторный блок питания с защитой от КЗ
Здравствуйте, друзья! Лабораторный блок питания является прибором первой необходимости для начинающего радиолюбителя и по этому я хочу представить вашему вниманию свою новую самоделку. Очень простой и надежный лабораторный блок питания с регулятором напряжения от 1,5 до 30 вольт, максимальной силой тока 5А и защитой от короткого замыкания с звуковой сигнализацией. Источником питания для приведенной ниже схемы может служить любой трансформатор или импульсный блок питания, например от ноутбука с выходным напряжением от 16 до 40 вольт и максимальной силой тока до 5А.
Схема лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как работает блок питания?
Напряжение от источника питания проходя через диодный мост Br1 выпрямляется и поступает на регулятор напряжения состоящий из транзистора Т1, резистора R1 и переменного резистора Р1. На выходе из регулятора получается 12 вольт. Этим напряжением постоянно питается вентилятор, реле К1 и вольт амперметр V/A1.
В режиме ожидания от диодного моста Br1 через постоянно замкнутые контакты реле К1 подается напряжение на звуковой сигнализатор короткого замыкания в результате чего в бипере SP1 раздается постоянный звуковой сигнал, что свидетельствует о исправной системе защиты от короткого замыкания.
При кратковременном нажатии кнопки START S1 подается напряжение через резистор R2 на базу транзистора Т2 в результате, чего транзистор Т2 открывается и подает питание на обмотку реле К1, контакты реле К1 переключаются и происходит самоблокировка реле К1. В момент срабатывания реле К1 отключается звуковой сигнализатор короткого замыкания, а в место него подключается регулятор напряжения на микросхеме LM338T. Далее напряжение через шунтирующий диод D2 поступает на выход блока питания. Регуляция напряжения на выходе из блока питания выполняется переменным резистором Р2. Контроль напряжения и силы тока осуществляется вольт амперметром V/A1. В случае короткого замыкания происходит падение напряжения на базе транзистора Т2, транзистор закрывается в следствии чего, контакты реле переключаются. Нагрузка отключается, а на звуковой сигнализатор короткого замыкания подается питание и раздается звуковой сигнал. После устранения короткого замыкания следует кратковременно нажать кнопку START S1 и блок питания снова перейдет в рабочий режим. И так может продолжаться до бесконечности.
Список радиодеталей для сборки лабораторного блока питания:
- Источник питания любой подходящий трансформатор или импульсный блок питания от 16 до 40 вольт
- Транзисторы Т1, Т2 TIP41C, КТ819Г и их аналоги
- Микросхема LM338T на 5А или LM350T на 3А, LM317T на 1,5А все зависит от мощности источника питания
- Микросхема NE555
- Диодный мост Br1 любой не менее 6А можно заменить диодами.
- Диоды любые D1 0,5А, D2 от 1,5А до 10А зависит от нагрузки возможно параллельное соединение диодов
- Конденсаторы С1, С2, С4 100нф, С3 470мкф 35в, С5 1000мкф 50в
- Резисторы R1, R4 1k, R2 5,1k, R3 270, R5 10k, R6 330, R7 150, R8 200
- Переменные резисторы Р1 10К, Р2 5К
- Реле SRD12VDC-SL-C 12В 10А
- Кнопка START S1 без фиксации на замыкание
- Вентилятор М1 от компьютера
- Бипер SP1 от компьютера или маленький динамик
- Вольт амперметр китайский универсальный с Alliexpress
Внимание: При сборке лабораторного блока питания не изменяйте номиналы конденсаторов С1, С4, С5 иначе не будет срабатывать система защиты от короткого замыкания.
Цоколевка применяемых транзисторов
Возможно вам это пригодиться…
Все детали следует разместить на печатной плате изготовленной по лазерно-утюжной технологии.
Печатная плата лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как настроить блок питания?
Схема лабораторного блока очень простая, но все равно требуется небольшая настройка. Поставьте переменный резистор Р1 в среднее положение. Включите блок питания в сеть, подключите мультиметр параллельно вентилятору, резистором Р1 установите напряжение 12 вольт. Резистором R3 регулируется напряжение питания звукового сигнализатора короткого замыкания, смотрите по схеме напряжение на входе сигнализатора должно быть 12 вольт.
Тональность сигнализатора изменяется резистором R4 и конденсатором С2. Громкость регулируется подбором резистора R6. Порог срабатывания системы защиты от короткого замыкания подбирается резистором R2. Напряжение на выходе из блока питания изменяется переменным резистором Р2 его ручка выведена на лицевую панель блока питания.
В процессе работы транзистор Т1, микросхема LM338T и диодный мост будут сильно нагреваться, поэтому их следует установить на радиатор, перед установкой обязательно изолировать от радиатора. Как это сделать читайте здесь: Как изолировать транзисторы от радиатора?
Для контроля напряжения и силы тока лучше всего установить вот такой универсальный вольт амперметр.
Кстати, его надо откалибровать. С обратной стороны прибора находится два маленьких переменных резистора один отвечает за вольтаж, второй за ампераж. Делаем так, подключаем параллельно к выходу блока питания мультиметр, включаем в режим вольтметра и сравниваем показания приборов, если показания не соответствуют крутим переменный резистор в разные стороны, чтобы добиться наиболее точных показаний прибора. Чтобы откалибровать амперметр переключите мультиметр в режим амперметра. К блоку питания подключите лампочку последовательно с мультиметром и сверьте показания приборов.
Все компоненты лабораторного блока питания легко помещаются в корпусе от компьютерного блока питания.
Так выглядит готовое устройство. Для чего я установил два выключателя и кнопку на крыше блока питания? Красный выключатель сеть, он отключает трансформатор от сети 220В. Синяя кнопка START предназначена для перевода блока питания в рабочий режим.
Черный выключатель линия, чтобы отключать потребители от блока питания без откручивания проводов от разъемов. Справа два разъема типа «Banana» для подключения потребителей. На передней панели находится переменный резистор Р2 для регулировки выходного напряжения. И очень важная деталь это универсальный вольт амперметр.
В своем лабораторном блоке питания я установил трансформатор на 1,5 ампера. Его мощности вполне хватает, чтобы зарядить небольшой 12 вольтовый аккумулятор от бесперебойника емкостью 7А, его я установил на аккумуляторный шуруповерт. Если вы хотите собрать мощное зарядное устройство для автомобильного аккумулятора своими руками, тогда надо увеличить мощность лабораторного блока питания до 10 ампер.
Как увеличить мощность лабораторного блока питания до 10 ампер?
Чтобы увеличить мощность лабораторного блока питания достаточно параллельно микросхеме LM388T подключить мощный 12 амперный транзистор MJE13009. И соответственно заменить источник питания на более мощный трансформатор или импульсный блок питания. Схема будет выглядеть так.
Схема лабораторного блока питания 1,5-30В 10А с защитой от КЗ
Печатная плата будет выглядеть так.
Печатная плата лабораторного блока питания 1,5-30В 10А с защитой от КЗ
А для любителей чего либо измерять, я решил снять пару осциллограмм в разных режимах работы блока питания.
На этой осциллограмме напряжение на выходе из блока питания снижено до 12 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 12 вольт.
А здесь максимальное напряжение на выходе из блока питания 25 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 25 вольт.
P. S. Все схемы и печатные платы в этой статье я разработал самостоятельно. И прежде чем написать я убедился в 100% работоспособности лабораторного блока питания во всех режимах. Если у вас, что то не получилось, проверьте все ли вы сделали правильно…
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает лабораторный блок питания.

Источник
Простой регулируемый блок питания 0-30в
Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.
Схема регулируемого блока питания на транзисторах
Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.
Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.
Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.
Печатная плата регулируемого блока питания 0-30В
Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.
Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.
Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

Источник