Кулер для видеокарты своими руками

Бюджетная водянка для GPU. Знакомство и первый опыт

Хочу поделиться с Вами, как Я собирал свою первую «бюджетную», местами самодельную, систему водяного охлаждения. Где-то на пути создания встречались неудобства, а где-то удача улыбалась. Я не ожидаю от СВО каких-то чудес и рекордов, а всего лишь хочу немного снизить температуру сильно-греющихся деталей и, разумеется, насладиться процессом ее создания. Также хочу чтобы те, кто тоже захочет собрать водянку сам, обратил внимание на трудности, с которыми я столкнулся и постарался избежать их.

Процессор у меня с заблокированным множителем, обычного дешевого башенного кулера хватает для его обдува, поэтому СВО я начал делать для видеокарты, т.к. её температура в требовательных играх достигала 80 и более градусов цельсия, а даунвольтом я не особо хотел заниматься.

Итак, начну с основ. Компоненты, которые потребуются для создания водяночки:

  • Водоблок
  • Радиатор
  • Вентиляторы на радиатор
  • Помпа
  • Расширительный бак
  • Шланги
  • Крепежные мелочи (хомуты, стяжки, герметик, винтики, гайки и т.д.)

Компоненты, которые я буду использовать:

1. Водоблок (Ватерблок)

Я смотрел много статей по СВО и все сводится к двум вариантам — это изготовить водоблок самостоятельно, либо же просто купить готовое «решение». Для самостоятельного изготовления у меня недостаточно инструментов, да и, скажем так, «сырья» нету подходящего. Поэтому я не стал изобретать велосипед, а просто приобрел обычный дешевенький водоблок из Китая. обошелся он мне примерно в 300р. Если для процессора водоблок обычно применяют квадратного или круглого сечения шириной примерно в 50мм, то для видеокарты можно выбрать водоблок нестандартной формы. Видеокарта у меня Gigabyte GTX 760 windforce 3x OC, система охлаждения у нее состоит из подложки, прилегающей к чипам памяти и на которую крепится одна из двух секций радиатора. Эта секция прилегает к самой подложке и самому чипу ядра ГПУ. Вторая секция сквозная, для продувания цепей питания ГПУ.Здесь мною было решено оставить подложку и каким-то образом прикрепить к ней мой водоблок. Очень хотелось прикрепить водоблок именно вдоль платы, но из-за его длины ему мешали ровно прилегать к подложке конденсаторы питания. Поэтому я расположил его поперек платы.

Для крепления водоблока к подложке Я использовал заглушку от дисковода ДВД из корпуса. А от старой системы охлаждения я не спешил избавляться – ведь на видеокарте еще оставались без обдува цепи питания. Поэтому я просто решил старый радиатор с вентиляторами приколхозить прямо к водоблоку. Это дополнительно охладит сам водоблок и цепи питания будет обдувать как и раньше.

Стяжками прикрепил радик к пластине, крепление конечно оставляет желать лучшего, но оно вроде «держит».

Крепление водоблока оказалось самым сложным на пути строения СВО, все же надо было взять покороче размером, ибо в дальнейшем я столкнусь с проблемой закрытия боковой крышки корпуса. Сам водоблок выпирает нехило, так еще и угол сгиба шлангов, выходящих из него – немалый и тоже требует места. А если б водоблок был меньше, то выпирал бы не настолько далеко, ну или же повторюсь – его можно было бы расположить вдоль не налегая на кондёры питальника.

2. Радиатор

Можно конечно приобрести китайские, но на мой взгляд они и по цене слегка дороговаты и размер не особо внушительный. А вот радик от печки какого-нить авто – быстрое и дешевое решение. Я приобрел новенький радик от печки Газели, обошелся он мне в 700р. Он довольно массивный и сперва я даже не думал что он поместится в корпусе. Но когда стал расчищать пространство в корпусе, Радик влез в него прям тютелька-в-тютельку. Вот только тут же обнаружилась проблемка другого плана – плотность ребер была довольно велика и продуваемость вентиляторами очень плохая. Я ставил продув 120мм и 80мм вентиляторы, но в дальнейшем поставлю еще с другой стороны на вытяжку пару-тройку штук вентиляторов.

3. Помпа

С помпой был довольно трудный выбор, ибо и цена на хорошую помпу велика и много помп были в основном погружного типа. Я не стал разбираться какие погружные а какие наружные, да и дешевую помпу за 200р не хотелось брать. Тут подвернулась интересная помпа, идущая вместе с расширительным баком. Цена ее правда в районе 800р, но зато она решила проблему изготовления расширительного бачка. Также привлек коннектор питания помпы – стандартный 3-пиновый разъем как у запитки стандартного вентилятора от материнской платы – тупо «воткнул и работает!»

Читайте также:  Мыло ручной работы своими руками для начинающих

Конечно многие скажут что помпа мол туфта, ненадежная, мало дует и т.д. Не знаю что сказать по этому поводу, но, как говориться, «Будем посмотреть».

4. Шланги

Из китая выписал 1м силиконового шланга сечениями 8х12мм прозрачный обошелся в 150р. Внутренний диаметр следует тщательно подбирать под другие компоненты. Также для «женитьбы» радиатора печки газели было взять пару шлангов от стандартного кухонного крана.

С самого начала сборки у меня встал вопрос – «как же поженить» Радиатор печки с силиконовым шлангом. Диаметр трубы радика печки внешний аж целых 16мм. Внутренний диаметр я не измерял, но при сборке случайно обнаружил, что переходник от металло-пластиковой трубы подходит под трубу радика(забивается в трубу небольшим усилием).

А в дальнейшем на эти переходники навинчиваются шланги от кухонного крана.

И уже после эти шланги легко можно соединить с силиконовым шлангом. Честно говоря – с начала сборки Я думал что мне не хватит длины 1м силиконового шланга, но когда инсталлировал в систему шланги от крана, то длина самой системы стала заметно больше и ее стало хватать для «подводки» ко всем компонентам.

Хоть переходники от металлопластика заходили с трудом в трубки радика, я их все же обмазал герметиком и плотно забил до упора.

Радиатор печки закрепил стяжками к передней стенке корпуса, стяжки еле просунул между ребрами (настолько плотные ребра).

На помпе штуцеры немного большего диаметра (Я думал они 10мм, а оказалось что чуть больше – 11 или 12мм). Поэтому шланг на помпу еле налез, но на всякий случай слегка притянул хомутами. Сами хомуты мне не понравились, ибо они не полностью способны затянуть шланги малого диаметра. Другое дело – самозатягивающиеся хомуты, они хорошо справятся с этой задачей. Но их я не нашел в продаже. У меня имелось лишь пара штук, которые шли в комплекте с помпой. Ими я закрепил шланги водоблока, где на мой взгляд было одно из опасных мест протечки – шланг на водоблок наделся слишком легко, хоть разность диаметров водоблока и шланга была 2 мм.

Наконец пришло время собрать тестовую сборку, чтобы проверить – нет ли протечек, залить нужное количество охлаждающей жидкости. На счет жидкости я не стал задумываться – тут кто на что горазд – кто дистиллированную воду, разбавленную спиртом, добавляет, кто еще что… Я тупо купил тосол и все. Тем более его цена всего 85р за литр. А на мою сборку ушло всего пол литра.
Тестовая сборка компа мне требовалась лишь для запуска помпы – блочок питания, старая МП с процем и памятью – от которой мне требовался лишь запуск БП и 3-пиновый разъем для вентилятора – куда Я запитал помпу. Начал прокачивать систему, протечек не обнаружил, все было исправно. Хотя на мой взгляд помпа слабоватая. Но опять же – экономил на расширительном бачке.

Как видно по корпусу – я избавился от крепления HDD и дисководов. Для жестких дисков сделал одну стенку, которую закрепил в продолжение задней стенки, к которой крепится МатПлата. Ну и сами жесткие диски прикрепил к ней вертикально и чуть выше дна корпуса (чтобы в случае протечки их не залило).

Видеокарта довольно длинная, а с водоблоком стала еще тяжелее, поэтому я сделал небольшую подпорку под задний угол, чтобы плату не изгибало.

Кэблмэнеджментом я не занимался, поэтому провода БП повсюду, ибо корпус у меня все равно стоит внизу под столом и его никто особо не видит, а уж тем более что там у него внутри.
Как видно на фото – шланги из водоблока мешают закрыться боковой крышке корпуса, пока что не придумал ничего по этому поводу.

Не буду ходить вокруг да около, скажу прямо – температуру нагрева удалось снизить примерно на 10 градусов цельсия в среднем. Но я все равно доволен результатом. К тому же теперь шума от вертушек стало меньше, а некоторые корпусные вентиляторы я запитал от 5В.

Читайте также:  Кукла северная берегиня своими руками пошаговая инструкция

Ошибки, недочеты, которые хотелось бы исправить:

  • Радиатор охлаждения – должен нормально продуваться
  • Водоблок длинноват, можно было взять покороче, это решило бы несколько проблем как с выпирающими шлангами, так и с закрыванием боковой крышки корпуса.

На счет помпы пока трудно сказать – температура видеокарты снизилась незначительно – тут может быть несколько проблем:

  • Помпа действительно слабоватая
  • Радиатор недостаточно рассеивает тепло из-за плохого обдува
  • Ватерблок плохо принимает тепло (плохой прижим к чипу)

Ну а так всем доволен. Температура держится в районе 65-71 градусов, не то что раньше.

Источник

Система охлаждения видеокарты с элементом Пельтье своими руками

Эта история имеет множество поучительных моментов, начиная от «бесплатного сыра» в известном месте и заканчивая тем, что любую проблему все-таки можно решить.

Попавшие мне в руки видеокарты XFX 7600 GS вызвали бурю эмоций.

Поначалу воображение распаляла возможность получить SLI-режим на тогдашней ASUS P5ND2 (nForce4 IE SLI). И действительно, открывшиеся взору картинки любимых игр пестрели невиданными ранее деталями и эффектами. Вдруг через пару часов обнаружилось странное мельтешение на части экрана, а затем и выпадение текстур. Температуры ГП лежали в пределах 60 градусов, и опасений вроде не вызывали. Танцы с бубном, драйверами и вентиляторами не принесли серьезного результата (как и попытка установки Vista — с ней было еще хуже, поддержка там SLI хромает на обе лапы). Поиски в Интернете натолкнули на мысль о деградации памяти, а анализ напряжений показал, что вместо 1,8 вольта имеют место все 2,0. Данное отклонение было замечено на трех экземплярах видеокарт, и, скорее всего, является установленным самой XFX значением (для GS-версии оно непонятно зачем). В одной из статей был обнаружен метод вольтмода, в том числе и обратного, для чипов памяти. Что тут же и было сделано посредством карандаша. Ура, все заработало! Но что-то подспудно продолжало тревожить. И не напрасно… Поскольку все это происходило зимой, я приоткрыл балкон, и температура упала. А что будет, когда на улице потеплеет?

Что же будет летом? Этот вопрос не давал покоя. Охлаждать водой такие видеокарты не хотелось, уж больно непропорционально производительности увеличивалась стоимость всей видеоподсистемы, и без того не особо дешевой…

Как-то при установке на работе автомобильного холодильника-разогревателя меня заинтересовал принцип его работы. Щелк — и охлаждает, щелк — греет. Называется эта штука модуль Пельте. Порывшись в Интернете, я разобрался, что это такое. Чуть позже мне посчастливилось найти ее на Караваевых Дачах.

Итак, я приобрел сей девайс и включил его для проверки: -8°C на одной стороне и — ой, горячо! — на второй. Срочно ко второй стороне был прикреплен процессорный радиатор с кулером, и вся конструкция водружена на видеокарту. Однако чуда не произошло. Мало того, ухудшилось охлаждение видеочипа, к тому же громоздкая конструкция заняла не только соседний слот PCI, но и затруднила доступ ко второму PCI-E. Нет, так не пойдет.

Просмотр форумов выявил подобные проблемы у других экспериментаторов. Лишь в одном случае проскользнул удачный результат, но информации было мало. Изучение обзоров показало, что существуют промышленные образцы с регуляторами тока, как для видеокарт, так и для процессоров. Но ведь как-то сделали же? В одном из описаний значилось примерно следующее: «Контактная подошва из обработанной меди». Ага, а ведь теплоемкость керамики самого модуля действительно никакая! Нужен теплоаккумулятор, лучше всего тоже медный. Однако попытка изготовить его самостоятельно из двухмиллиметровой медной пластины успеха не принесла. Контакт с девятью микросхемами одновременно обеспечить не удавалось — то GPU не касался, то микросхемы памяти.

Решено было фрезеровать выемку под GPU, и не в меди, а в алюминии (не нашлось материала, удовлетворяющего требованиям). Все отдано токарю, но как раз в это время на улице потеплело. Море обид от детей: папа запрещает играть. Тогда возникло решение временно отказаться от дополнительного охлаждения видеоядра и бросить все усилия на память. Буквально за несколько часов была собрана следующая конструкция:

Пластина, не сильно погнутая при резке, нормально легла на чипы:

Внешнее питание около 7 В (подключать к штатному БП как-то не рискнул) позволило снизить температуру до 10 градусов, и артефакты пропали. Второй PCI?E стал недоступен, но комфортность работы восстановлена:

Читайте также:  Потолочный вентилятор ремонт своими руками

Задержки с проточкой пластин подвигли на еще одну попытку самостоятельной сборки полной пластины, не приведшую к успеху. Наборной переходник даже при 15 вольтах не обеспечивал достаточного охлаждения в 3D-режимах, а в 2D начиналось выпадение конденсата.

Хоть это и дистиллят, но вроде бы от воды отказались еще в самом начале. 🙂 Попутно был собран элементарный автоматический регулятор тока, правда, чуть мощнее, чем для вентиляторов компьютера (схемами подобных устройств богаты все оверклокерские сайты). На него возложена задача изменять подводимое к элементу Пельтье напряжение в зависимости от температуры пластины (где-то 15 градусов по датчику тестера). От регулировки оборотов самого вентилятора было решено отказаться, вторая сторона сильно греется в любом случае.

Раздельное охлаждение проработало порядка 10 дней до тех пор, пока не были наконец получены проточенные пластины. Радиаторы охлаждения модуля Пельтье приобретены на тех же Кардачах за совсем смешную цену. Вентилятор от старой видеокарты пылился давно, и после смазки подошел в одну из проточек радиатора. Все компоненты в наличии.

В процессе сборки контролировался хороший контакт со всеми чипами, а также с обеими сторонами элемента Пельтье. В качестве термопрокладки применен поролон, стяжные болты изолированы пластиковыми шайбами, чтобы не передавали тепло на охлаждающую пластину. Сама пластина тоже обклеена по максимуму, зачем охлаждать остальные компоненты и окружающий воздух? Установка требует аккуратности, чтобы не снести какие-нибудь детали самого видеоадаптера.

Проверка работы показала температуру около 0 градусов на поверхности пластины:

Да и вся система в сборе имеет, в отличие от предыдущих, довольно товарный вид:

При этом доступ к остальным портам PCI свободен. Хочется предупредить, что весит эта конструкция немало, желательно соблюдать аккуратность при установке и чем-нибудь ее подпереть, дабы не оторвать слот. Водружаем в системник и пробуем, что же у нас получилось.

Питание охлаждающей системы осуществляется от отдельного источника с таймером задержки выключения вентилятора модуля. Не хотелось даром греть системник, благо многие пользователи иногда страдают забывчивостью (как-то охлаждение простояло включенным всю ночь). Источник питания обеспечивает ток около 10 А для двух видеоадаптеров в SLI-режиме.

После включения я проследил некоторое время за температурой:

Помня о больной памяти, оставляем ее в покое и, потирая руки, обращаем свой взор на графический процессор. Без перепрошивки BIOS частоту удалось поднять лишь до 500 МГц от штатных 400 МГц. После обновления BIOS’а видеокарты разгон продолжен. Обратите внимание на скорость заполнения:

Включим мониторинг температуры и запустим 3DMark06. Результаты меня удовлетворили:

Температура по окончании теста тоже:

В течение минуты она вернулась к 29 градусам.

Конечно, постоянно работать в таких режимах не стоит, и разгон графического процессора впоследствии был сброшен до 525 МГц. Стоимость конструкции не превышает 10 у.е., что с учетом возлагаемых на нее обязанностей радует, эффективность проверена майской и июньской жарой в Киеве, когда воздух в квартире прогревался вечером до 30 градусов. Полученные результаты показали достаточную эффективность собранной системы и ее право на жизнь наряду с другими. Каталог модулей Пельтье, найденный в Интернете, показал, что использовался 45-Ваттный модуль с максимальным напряжением питания 15,5 В. Ток при старте не превышал 5 ампер. Существует несколько типов модулей с максимальной отдачей до 70 Ватт, правда, рабочее напряжение у них уже 28 вольт. В отношении легкости изготовления и надежности система не уступает водяным (считающимся в народе панацеей от всех бед), а возможность получения небольших отрицательных температур позволяет получить более высокие показатели разгона. Скорее всего, будет предпринята попытка разгона процессора GeForce 7600GS до частоты 700 МГц уже с вольтмодом — интересует зависимость производительности от пропорции GPU-память. А также заказана новая медная пластина для GeForce 8600GT для проверки разгона этой видеокарты. Соглашусь с тем, что большинству пользователей такие эксперименты не нужны. Да и меня к ним подвиг только обнаруженный дефект. Но полученный опыт позволяет использовать модули Пельтье для охлаждения других элементов системы. Возможно, эта статья позволит кому-то избежать моих ошибок и улучшить полученные результаты. Ну и, естественно, за неудачные эксперименты ответственен только экспериментатор.

Источник

Оцените статью
Своими руками