- Какие бывают кронштейны и крепления для прожекторов и как сделать своими руками?
- Какие бывают кронштейны для прожекторов
- Как сделать кронштейн своими руками
- Как крепить прожектор на стену
- LED светильники своими руками
- Поэтому было принято решение конструировать LED лампы самостоятельно
- Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором
- Как работает схема:
- LED лампа в рожковую люстру
- LED лампа в плоский потолочный светильник на кухню
- LED светильник для санузла
- Настольная лампа
Какие бывают кронштейны и крепления для прожекторов и как сделать своими руками?
Прожектор — это осветительный прибор, предназначенный для наружного и искусственного освещения больших внутренних помещений. Для установки такого оборудования на месте установки используется специальный кронштейн для проектора, который соответствует способу крепления изделия к элементам зданий или специальных сооружений.
Содержание: 1. Какие бывают кронштейны для точечных светильников 2. Как сделать кронштейн своими руками
Какие бывают кронштейны для прожекторов
При установке проекторов на подставку или опору освещения не обойтись без монтажных кронштейнов. В этом случае такое изделие можно закрепить как опорную головку или на ее боковую поверхность.
Специалист по ремонту, обслуживанию промышленного электрического и электронного оборудования. Спросите у специалиста В зависимости от типа кронштейна, его геометрической формы и прочности на нем может быть установлено от одной до нескольких единиц осветительных приборов.
Наибольшей популярностью в этой категории товаров пользуются модификации под названием поперечины и конструкция типа «корона».
Т-образная модель и способ ее фиксации на опоре
Шпалы бывают следующих типов:
- «L» — характеризуется высотой конструкции и вылетом боковой планки, на которой установлены осветительные приборы. Количество осветительных приборов зависит от их геометрических размеров и веса;
- «Т» — предполагает размещение максимум шести источников света и характеризуется размерами начала несущих планок;
- «V» и «H» — характеризуются размерами свеса крестовин, на которых крепятся прожекторы.
На конструкции типа «корона» (выполненной в виде круга) предполагается размещение шести и более прожекторов.
Корона на опоре освещения
Крепление кронштейнов к опоре освещения (столбу) может производиться разными способами:
- при помощи шпилек крепление производится болтами;
- xom, используя гайки и шайбы;
- фланцевым способом крепление осуществляется болтами и гайками.
В разных производителях есть целые серии кронштейнов для проекторов, поэтому при выборе таких конструкций нужно внимательно ознакомиться с предложениями и выбрать подходящую модель.
Современные светодиодные прожекторы отличаются не только хорошими световыми характеристиками, но и малым весом и небольшими геометрическими размерами. Эти индикаторы позволяют размещать на таких конструкциях большее количество источников света, что, в свою очередь, позволяет получить качественное освещение вместо их размещения.
Конструкция кронштейна, особенно для светодиодных фар с малым весом, может фиксироваться, поворачиваться и с помощью гибкой ножки.
Варианты крепления кронштейнов с помощью хомутов на опорах разного сечения
При размещении осветительных приборов на фасаде здания они выполняют функцию освещения прилегающей территории, а также служат освещением конструкции, на которой они установлены.
В связи с этим конструкция кронштейнов для фасада может быть разной.
Некоторые из возможных вариантов таких конструкций, предназначенных для крепления источников света на стене, показаны на рисунке ниже:
Кронштейны для крепления на вертикальной поверхности (на фасаде здания)
Как сделать кронштейн своими руками
Самый простой способ сделать кронштейн для светодиодного прожектора — он легкий и не требует металлоконструкций большого сечения.
Если пользователь умеет работать со сварочным оборудованием и переносным электроинструментом, то простейшим вариантом для самостоятельного изготовления будет конструкция, показанная на рисунке ниже:
Кронштейн из профильной трубы и металлического уголка
Работа по изготовлению данной модели ведется следующим образом:
- из профилированной трубы квадратного сечения сечением 40 × 40 мм вырезается зазор, длина которого соответствует характеру освещения (подсветка, местная, общая и т д.), которую должен обеспечивать проектор;
- в заготовке просверливаются отверстия от угла, в местах, соответствующих отверстиям на арке проектора;
- из металлического уголка сечением 40 × 40 × 4 мм вырезается еще один кусок, длина его должна соответствовать длине дуги проектора, предназначенного для установки;
- из листа толщиной 2,0 мм вырезается заготовка размером 150 × 150 мм, после чего в углах просверливаются монтажные отверстия для крепления кронштейна к стене;
- собранный кронштейн покрывается слоем грунтовки и затем окрашивается.
- все подготовленные заготовки собираются в единую конструкцию путем сварки;
Вариант простейшего кронштейна для установки проектора из металлического профиля
Как крепить прожектор на стену
Способ крепления кронштейна к стене зависит от того, из какого материала она сделана.
Если точечный светильник на кронштейне крепится к деревянному каркасу здания, в качестве крепежа можно использовать гвозди или шурупы. Если стена кирпичная, то используются монтажные распорки или дюбеля, забиваемые с помощью специального оборудования (шуруповерта, пневмоинструмента, пистолета и т.д.). Ну а если стена бетонная, можно использовать анкерные болты.
Довожу до вашего сведения! При использовании дюбелей и анкерных болтов для их установки необходимо просверлить отверстия диаметром, соответствующим диаметру крепежа.
Конструкция кронштейна для точечного светильника может быть совершенно разной, особенно если изготовлена вручную. В этом случае все зависит от количества прожекторов, имеющегося материала и фантазии мастера, выполняющего работу.
Источник
LED светильники своими руками
Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.
Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».
При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:
- Срок службы ниже, чем у ламп накаливания.
- Высокочастотные помехи от блока питания.
- Лампы, не любят частого включения – выключения.
- Постепенное снижение яркости.
- Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
- Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.
Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:
- Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
- Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).
Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.
Но именно в этой конструкции кроется «засада».
Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.
Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.
Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.
Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?
Поэтому было принято решение конструировать LED лампы самостоятельно
Основной критерий – минимизация стоимости.
Есть два основных направления при разработке светодиодных источников света:
1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.
2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.
Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».
Такое добро продается по 3 рубля пучок на любом радиорынке.
Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.
В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.
Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.
Элементная база тоже не из дорогих.
- диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
- пленочные конденсаторы с напряжением 630 вольт (с запасом)
- 1-2 ваттные резисторы
- электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
- такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя
Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.
После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.
Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором
Типовая схема изображена на иллюстрации:
Как работает схема:
Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.
Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.
Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.
Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).
Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.
Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.
Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети — U led) I – полученный ток цепи в амперах
200 – это константа (частота сети 50Гц * 4)
С – емкость конденсатора С1 (гасящего) в фарадах
U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)
Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.
Для удобства можно создать формулу в Exel.
Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.
Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).
LED лампа в рожковую люстру
Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.
В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.
После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.
Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.
Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.
Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.
Светит равномерно, в глаза не бьёт.
Люмены не мерял, по ощущениям – ярче, чем лампа накаливания 40 Вт, немного слабее 60 Вт.
LED лампа в плоский потолочный светильник на кухню
Идеальный донор для подобного проекта. Все светодиоды буду расположены в одной плоскости.
Рисуем шаблон, вырезаем матрицу для размещения LED элементов. При таком диаметре плоский лист ПВХ будет деформироваться. Поэтому я использовал донышко от пластикового ведра из-под строительных смесей. По внешнему контуру есть ребро жесткости.
Диоды устанавливаются с помощью привычного шила: 2 дырки по разметке.
Светильник рассчитан на 120 LED элементов, разбитых на 2 группы по 60 шт., для надежности схемы. Изготавливаем 2 одинаковых драйвера.
Монтируем их на диэлектрических проставках с обратной стороны.
Для крепления диска, в центре устанавливаем подиум из ПВХ.
Вешаем светильник на потолок, включаем – все работает.
Для оценки яркости: по углам расположены 4 фирменных LED лампы от IKEA, со светоотдачей по 400 Lm.
LED светильник для санузла
Тоже легко реализуемый проект. Извлекаем содержимое светильника, устанавливаем матрицу на 30 светодиодов, и соответствующий драйвер.
Свет мягкий, равномерный, для данной «комнаты» более чем достаточно.
Настольная лампа
В качестве корпуса использован колпачок от дезодоранта.
Патрон Е27 традиционно от сгоревшей экономки.
В корпус вместилось 55 светодиодов.
Получилось компактно и аккуратно.
В настольной лампе «инсталляция» смотрится, как родная.
И светит вполне уверенно.
Ребенок, вдохновленный успехами папы, попросил подсветку для компьютерного стола. Была найдена какая-то изящная коробочка, в которую поместился драйвер.
В качестве корпуса я применил короб для прокладки кабеля. Размер профиля: 10*10 мм.
Чтобы свет не бил в глаза, а был направлен сверху вниз, конструкция разместилась на уголке со стороной 25 мм, из белого ПВХ.
Все работы выполнены из компонентов, которые практически ничего не стоят. Кроме того, это прекрасный повод попрактиковаться в радиоделе.
Источник